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ABSTRACT

Our knowledge of Physics is fundamentally bound by the sensitivity of our

detectors to the quantity that we are attempting to measure. For current and

future gravitational wave detectors we are now predominantly limited by the

Quantum noise, which is due to the fundamental Quantum fluctuations of the

vacuum. This hinders our detection of gravitational waves from high-frequency

astronomical sources such as neutron star mergers, while also impacting pro-

posed searches for new physics such as axion detection and Quantum gravity

experiments. Many techniques have been introduced for reducing the effect

of the Quantum noise such as negative dispersion, variational readout, and

frequency-dependent squeezing. However, from the outset all of these tech-

niques are inferred via a process of trial and error combined with prior expe-

rience, and also often only target specific frequency regimes. Therefore it is

not obvious how to systematically engineer a specific desired response for a

detector without a large amount of unguided research and development. How-

ever, using new techniques for the network synthesis of quantum systems from

the quantum control community, I show how it is possible to reproduce a de-

sired quantum filter. This is then used to develop a totally new framework

for designing optimal detectors that saturate the Heisenberg limit, culminat-

ing in a general and intuitive approach to developing new breakthroughs in

detector design. This approach then leads to the proposal of an all-optical PT

symmetric amplifier, which is both stable and has infinite DC response.
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Notations

Notation/Phrase Meaning

f(ω) =
∫ +∞
−∞ dt eiωtf(t) Fourier transform

f(t) = 1
2π

∫ +∞
−∞ dω e−iωtf(ω) Inverse Fourier transform

f(s) =
∫ +∞

0−
dt estf(t) Laplace transform

dA(t)
dt

= i
~ [H,A(t)] Heisenberg equation of motion

AT Matrix transpose

A† Conjugate transpose or adjoint

A# Element-wise complex conjugate or adjoint

(no transpose)

ω0 Laser carrier frequency

Ω Gravitational wave sideband frequency

SFF (Ω) Double-sided power spectral density
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Chapter One

Introduction

Incredibly, we have arrived at a moment where the most limiting form of noise

in high-precision measurements is the quantum noise, i.e. the fundamental

fluctuations of the quantum vacuum. As we can see in Figure. 1.1, it is the

highest broadband noise source in current-generation advanced gravitational-

wave detectors, limiting the detection of high-frequency sources such as binary

neutron star mergers and pulsars. It is also a limiting noise factor in searches

for new physics using interferometers [1, 2].

The root of the quantum noise is the Heisenberg uncertainty principle

which states that two incompatible (i.e. non-commuting) observables cannot

be measured simultaneously. This leads intuitively to a non-zero minimum

energy for a harmonic oscillator. Consider a particle in a known harmonic

potential. Since Heisenberg tells us that we cannot simultaneously know both

its momentum and position precisely, the particle cannot stop moving as then

we could deduce both its momentum and position, so therefore there exists is

a non-zero minimum energy for the particle. Since the particle is confined in

space, i.e. its position wavefunction goes to zero at infinity, it can only take

3
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Figure 1.1 The theoretical noise budget for advanced LIGO [3] show-
ing both classical and quantum noise sources. At frequencies above
∼ 100 Hz the sensitivity is limited entirely by the quantum shot noise.

certain discrete energies, with each unit of energy being called a “quanta”. If

we de-dimensionalise the position and momentum via x̂ → x̂
√
~/(2mω) and

p̂→ p̂
√

~mω/2 where m is the particle mass and ω is the oscillator frequency,

it can be shown that in this state of minimum energy—called the vacuum

state, as it is devoid of quanta—the dimensionless position and momentum

have equal variance. It turns out that each mode of the electro-magnetic field

is exactly equivalent to a harmonic oscillator if we call the position the “electric

field” and the momentum the “magnetic field”. Therefore we see an intrinsic

uncertainty in the vacuum electro-magnetic field arises known as the quantum

noise, which is superimposed on all measurements and thus obscures the value

of the signal we are interested in measuring. This effect is very tiny, how-

4
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ever as shown in Figure. 1.1 the quantum noise is actually the most limiting

noise source at high frequencies, greater than any classical source of noise. As

we shall discuss in Section. 2.1 the electric and magnetic field can be written

as real quadrature operators that describe the amplitude and phase fluctua-

tions of the field respectively. In the context of high-precision measurements,

particularly gravitational wave detectors, the phase quadrature uncertainty

manifests at the output as shot noise, while the amplitude quadrature uncer-

tainty pushes the suspended optics with a stochastic force which couples back

into the measurement output, a process called measurement back-action.

Figure 1.2 A particle in a harmonic potential V (x) cannot have zero
kinetic energy as then both its position and momentum would be
known precisely. The minimum energy is given by 1

2
~ω, which is the

eigenvalue of the energy eigenstate known as the vacuum state. The
right-hand plot shows an equiprobability contour of the phase-space
joint quasi-probability distribution W (x, p) known as the Wigner
function. In this case the Wigner function is a 2-D Gaussian dis-
tribution and so the variances are equal ∆x = ∆p.

In recent years there have been massive theoretical and experimental efforts

to reduce the impact of quantum noise on high-precision measurements, owing

to the extreme sensitivities reached by modern advanced gravitational-wave de-

tectors. One of the most important milestones was Kimble’s paper detailing se-

tups for converting gravitational wave detectors into quantum non-demolition

5
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(QND) detectors [4]. In that paper various approaches were explored for sur-

passing the standard quantum limit—the quantum noise limit arising from the

balance between the shot noise and measurement back-action—specifically by

taking advantage of the ponderomotive squeezing of the output light to reduce

the quantum noise over a broadband magnitude. Another technique which

shall be a main focus throughout this thesis is to use an all-pass quantum

filter exhibiting negative dispersion known as an “unstable filter” to directly

broaden the detection bandwidth without sacrificing the peak sensitivity [5].

Figure 1.3 The shot noise spectrum at the input Saa has a white-
noise spectrum when the input port is in the vacuum state. Often the
transfer function from the input to the output has a unity spectrum1,
and so the signal-referred spectrum Shh is shaped only by the detec-
tor’s signal response Th. Therefore we are interested in how to shape
the signal response of the detector.

Before we begin, let us make clear the problem we want to tackle. For

measurements of high-frequency sources, such as binary neutron star (BNS)

1In the most general case it obeys Eq. (5.13), which means that the transfer function

must have unity gain at all frequencies unless the state-space is augmented to add additional

lossy noise channels.
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mergers, we are entirely limited by the quantum shot noise [6, 7]. Therefore

this will be our main focus and we will generally neglect consideration of the

low-frequency radiation pressure noise. Equivalently, we can say that we are

limited by the coupling of the signal to the output, since the quantum shot

noise takes a flat white-noise spectrum at the input.2 In general then, we are

simply interested in the frequency response of the detector, and can equate

quantum shot noise reduction to the design of quantum filters. So it is my aim

in this work to deduce a general framework for the design of optimal quantum

filters for high-precision measurements. The core is two important observations

arising from the quantum control community. First, the observation that the

conservation of the commutation relations among all modes of the system

places a strong constraint on whether a quantum filter is realisable [8, 9], and

if not whether any additional noise channels need to be added to make it so.

Second, a method for realising an arbitrarily complicated physically realisable

linear quantum system [10]. Combining these methods with the fundamental

limit on the measurement of the signal, the quantum Cramér-Rao bound, we

can directly infer the optimal detector for a given number of degrees of freedom.

The outline of this thesis is as follows. In Chapter. 2 I give an overview of

the quantitative origins of quantum noise and the techniques used to analyse

the frequency-domain behaviour of quantum systems throughout this work. In

Chapter. 3 I then discuss the Mizuno limit, an important theorem limiting the

total integrated sensitivity of resonant measurement devices. I then discuss

2In fact, as we shall discuss in Section. 6.2.2, the fundamental limiting factor is actually

the fluctuations in the degree-of-freedom dispersively coupled to the signal of interest.
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how bandwidth broadening techniques such as the unstable filter can be used

to surpass this limit, giving an example of a new setup implementing band-

width broadening known as the transmission-readout setup. In Chapter. 4

I briefly review the control theory ideas required throughout the thesis, dis-

cussing the use of local control and optimal combination to locally stabilise un-

stable degrees of freedom without sacrificing sensitivity after post-processing.

In Chapter. 5 I introduce the general framework for realising physical quantum

systems directly from their frequency-domain dynamics and show how it can

be applied to high-precision measurements. The framework is demonstrated

by creating an all-optical realisation of the aforementioned unstable filter as an

example, reproducing the well-known internal squeezing setup. I then detail

how the approach can be extended to n degrees of freedom. In Chapter. 6

I then discuss how this framework can be used to design optimal detectors

via two approaches: first by designing coherent feedback filters for integration

in currently existing setups, and secondly by designing entire detectors from

the bottom up giving three instructive examples. In Chapter. 8 I introduce

the PT-symmetric quantum amplifier and an all-optical realisation in a LIGO-

like setup as well as a tabletop experiment proposal. Finally, in Chapter. 9 I

discuss a software package I have created known as SImBA which allows the

automatic application of the framework discussed previously, for example gen-

erating a graphical representation of the physical realisation from the transfer

matrix.

8



Chapter Two

Analysing quantum noise

In this chapter we briefly discuss the methods used throughout this thesis

for the analysis of quantum systems, specifically detailing the approach used

for computing optical transfer functions based on the Heisenberg equations of

motion of the system. First, we start with a brief quantitive overview of the

origins of quantum noise, and then we construct the Hamiltonian for a tuned

cavity with an open port and suspended mass and show how the equations of

motions and thus the transfer functions can be derived.

2.1 Fundamental fluctuations of the quantum

vacuum

The starting point of quantum optics is the quantisation of the freely propa-

gating electromagnetic field Hamiltonian density in terms of a continuum of

independent quantum harmonic oscillators modes [11, 12]. Instead of focussing

on the free-space continuum modes we will restrict ourselves to the much sim-

9
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Figure 2.1 Noise ellipses (equiprobability contours) for the vacuum
state and amplitude squeezed state. The latter has a reduced variance
in the amplitude quadrature, and so an increased variance in the phase
quadrature.

pler case of cavity eigenmodes with discrete spectra, later bringing back the

continuum modes via the Langevin equation. Annihilation and creation of

quanta in a single mode is performed by the operators â and â† respectively,

with commutator [â, â†] = 1. Of course, since these operators are not Hermi-

tian they cannot be observed. Instead we can observe Hermitian quadrature

operators,

â1 =
â+ â†√

2
, â2 =

â− â†√
2i

, (2.1)

called the amplitude and phase quadratures respectively, which correspond to

the position and momentum of the harmonic oscillator mode. They can also

be shown to correspond to amplitude and phase modulations of the electric

field in the limit of high photon number [13]. The commutator is [â1, â2] = i

and so they are incompatible observables. In both the vacuum state |0〉 and

10
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the coherent state |α〉1, both quadratures have equal variance,

(∆a1)2 =
1

2
, (∆a2)2 =

1

2
, (2.2)

and so are minimum uncertainty states since they satisfy,

(∆a1)2 (∆a2)2 ≥ 1

4
, (2.3)

with equality. States where ∆a1 6= ∆a2, i.e. where â1 and â2 are correlated,

are known as squeezed states.

Generally we work in the Heisenberg picture where the operators have time-

dependance rather than the states as in the Schrödinger picture, however we

factor out the fast oscillations of the field at the carrier frequency ω0. Therefore

we focus on the slowly varying amplitude â(Ω) of the field at absolute frequency

ω0 + Ω.

The formulation of the coupling of the cavity mode â to an external input

continuum mode âin was first derived by Gardiner and Collett [15] and is given

by the quantum Langevin equation,

˙̂a(t) = −γâ(t) +
√

2γâin(t), (2.4)

where γ = Tc/(4L) is the cavity bandwidth/decay rate where T is the mir-

ror transmissivity and L is the cavity length. This is a quantum stochastic

differential equation since âin(t) is a stochastic variable. Such equations were

developed rigorously by the formalism of quantum stochastic calculus [16].
1The coherent state |α〉, also known as the displaced vacuum state, is the state most

closely corresponding to a classical electric field, and is the state produced by a laser. In

comparison the number state |n〉 is considered highly non-classical [14, Ch.15].

11



Analysing quantum noise

In this interpretation âin is sourced by an external thermal heat bath with a

continuous spectrum which determines the operator’s statistics. Appendix. B

considers a situation where this heat bath is not in a vacuum state but rather

a finite temperature thermal state.

Taking the Fourier transform of Eq. (2.1) and noting that F{f †(t)} =

f †(−Ω) we find,

â1(Ω) =
â(Ω) + â†(−Ω)√

2
, â2(Ω) =

â(Ω)− â†(−Ω)√
2i

, (2.5)

and so in the frequency-domain the quadrature operators represent a mixture

of the upper and lower sidebands ω0 ± Ω about the carrier frequency ω0.

2.2 Hamiltonian approach to computing optical

transfer functions

In general we can use classical methods to analyse the quantum noise for a

system. The reason for this is that for a quadratic Hamiltonian, after applying

canonical quantisation by replacing the Poisson brackets with commutators,

the Heisenberg equations of motion of the system are formally identical to the

classical equations of motion. Therefore the classical field propagation formal-

ism can still be used. However it is often easier to start with the Hamiltonian

itself, directly calculating the Heisenberg-picture equations of motion from the

Hamiltonian and then solving them in the frequency domain. In this formal-

ism, each cavity is described by a single mode, a restriction known as the

single-mode approximation. Here time delays are neglected, so that the phase

12
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gained across the cavity is considered negligible. More specifically, for a cav-

ity tuned to frequency ω0, we consider only fields at frequencies ω0 + Ω where

Ω� FSR where FSR ≡ c/(2L) is the free spectral range of the cavity. In most

cases we are interested in frequencies and lengths such that this approxima-

tion holds, however in future long-baseline interferometers this approximation

must be lifted. Nevertheless, the analysis of many systems becomes more

straightforward.

Figure 2.2 Diagram of a detuned cavity with a suspended end mirror
as described by Eq. (2.6).

To achieve this, we follow the approach taken in [17], which we will sum-

marise here. As an instructive example we consider a detuned cavity with a

mechanically suspended end mirror, shown in Figure. 2.2. First we will con-

sider the case where the input mirror is fully reflective, so there is no light

entering the cavity. In this case both the cavity mode and the mirror mode

can be quantised using discrete modes due to the boundary conditions of the

cavity. Specifically we have the Hamiltonian,

Ĥ = ~ωmb̂†b̂− Fx̂+ ~∆â†â− ~
ω0

L
x̂â†â, (2.6)

which we have written in the rotating frame at a chosen laser carrier frequency

13
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ω0. Here F is some external classical force on the mirror, x̂ = xq(b̂e
−iωmt +

b̂†eiωmt) is the mirror position where xq =
√
~/(2mωm) is the ground-state

position uncertainty of the mirror and ωm is the resonant frequency of the

mirror, L is the length of the cavity, and finally ∆ is the detuning of the cavity

relative to the laser carrier frequency ω0.

Note that the last term—the radiation pressure between the mirror and the

cavity mode—leads to non-linear dynamics. To linearise the system we assume

that there are a large number of photons inside the cavity and then let â →

ā+δâ where ā2 is the mean number of photons (which we choose to be real and

positive) and δâ is some small fluctuation with zero mean. The mean photon

number is related to the intracavity power P by ā =
√

2PL/(~ω0c) where L

is the cavity length. Substituting this in, we see that the mean part leads to

a DC radiation pressure on the mirror which we assume is compensated, and

the cross term between δâ†δâ is taken to be negligible compared to the mean

photon number. We also get an additional DC force ~(ω0/L)ā2x̂ which we can

compensate experimentally and thus ignore. For convenience we then redefine

â to be δâ itself and obtain the linearised Hamiltonian,

Ĥ = ~ωmb̂†b̂− Fx̂+ ~∆â†â− ~
ω0

L
x̂ā(â+ â†). (2.7)

Lifting the restriction that the input mirror is fully reflective so that freely

propagating continuous light enters the cavity is difficult because it entails an

overlap integral over an infinite number of continuous modes rather than the

coupling of discrete oscillator modes. As shown in [18, 19, 11, 17], the result

14
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is given by a Langevin equation and an input-output equation,

˙̂a = −γâ+
√

2γâin + . . . , âout = âin −
√

2γâ, (2.8)

where γ ≡ Tc/(4L) is the cavity half-bandwidth where T is the input mirror

power transmissivity, c is the speed of light, and L is the length of the cavity; âin

and âout are the continuum fields entering and exiting the cavity respectively,

and . . . are the other terms in the equation of motion for â generated by the

Heisenberg equation of motion. These equations of motion are expressed in

the Hamiltonian via the term,

− i~√γ(âĉ†ext − â†ĉext), (2.9)

where ĉext(t = 0−) ≡ âin and ĉext(t = 0+) ≡ âout.

Now looking at the last term in Eq. (2.7), we can again write the displace-

ment x̂ in terms of the ladder operators b̂, b̂†. In the rotating frame at ω0 we

can ignore the ω0 + 2ωm sideband by invoking the rotating wave approxima-

tion, i.e. that ωm is greater than any frequency of interest. The interaction

Hamiltonian can then be written as,

− ~g(âb̂+ â†b̂†), (2.10)

where g = ω0āxq/L. Often we call this kind of interaction a “non-linear crystal”

or just “non-linear” interaction, as this same interaction Hamiltonian exists for

two modes in two-mode squeezing, which uses a non-linear crystal to produce

the quantum correlations.

In systems such as gravitational wave detectors we often have two cavities,

e.g. an arm cavity and a signal recycling cavity. To demonstrate this we can
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Figure 2.3 Diagram of a coupled cavity system with the coupled
cavity interaction described by Eq. (2.11).

also add an extra cavity mode Â as in Figure. 2.3. The interaction between

two cavities described by â and Â is given by the Hamiltonian,

i~ωs(âÂ† − â†Â), (2.11)

where ωs ≈
√
cγA/La where γA is the bandwidth of the Â-mode cavity and

La is the length of the â-mode cavity. Naturally, we call such a Hamiltonian

a “beamsplitter-like” interaction.

Since everything is linear, to calculate transfer functions of the system we

can simply calculate the first-order Heisenberg equations of motion and then

solve them in the frequency-domain.

2.3 Example: Tuned Fabry-Perot Michelson In-

terferometer

As a concrete example we consider a FP (Fabry-Perot) Michelson interfer-

ometer with arm cavities tuned to the laser carrier frequency ω0 shown in

Figure. 2.4. As shown in [4, 13] only the differential motion of the arm cavities

δL = Ly − Lx is observed at the dark port (labelled âin, âout) of the inter-
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Figure 2.4 As shown in [4, 13], for small arm-length modulations
δL = Ly − Lx, where |δL| � Ly, Lx, the tuned FP (Fabry-Perot)
Michelson interferometer can be mapped directly to a tuned cavity
with a suspended end mirror, such as is shown in Figure. 2.2.

ferometer for small modulations, with the differential arm cavity mode being

described by â. The common optical mode coupled to the common mode of

the arms’ motion is reflected back toward the power recycling mirror to the

left of the beamsplitter, which acts only to increase the effective input power

to the interferometer and hence the power in the arm cavities. On the other

hand, the differential optical mode coupled to the differential arm motion is

sent to the dark port. Therefore, a tuned FP (Fabry-Perot) Michelson inter-

ferometer can be mapped directly onto the cavity shown in Figure. 2.2. The

Hamiltonian of the entire system is then,

Ĥ =
p̂

2M
− Fx̂− ~(ω0/L)ā x̂(â+ â†)− i~√γ(âĉ†ext − â†ĉext), (2.12)

where x̂ is the differential motion of the test masses (and p̂ being the canonical

momentum conjugate to this quantity) with effective mass M = mtest/4 with
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mtest being the actual mass of the each test-mass (see [20, 21]), L is the length

of the arm cavity, γ = Tc/(4L) where T is the transmissivity of the ITM

(input test-mass). For a gravitational-wave (GW) the strain can be modelled

as an applied signal force (a GW tidal force) F = MLḧ.

Using Heisenberg’s equation of motion and the usual canonical commuta-

tion relations between each mode, the full set of equations of motion are given

by,

âout = âin −
√

2γâ, (2.13)

˙̂a = −γâ+
√

2γâin + iā(ω0/L)x̂, (2.14)

˙̂x = p̂/M, (2.15)

˙̂p = −MLḧ+ ~ā(ω0/L)(â+ â†). (2.16)

For simplicity we will only calculate the shot noise transfer function by

letting the test mass mtest (and hence effective mass M) go to infinity. In this

case we obtain the following frequency-domain equations after eliminating p̂,

âout = âin −
√

2γâ (unchanged), (2.17)

−iΩâ = −γâ+
√

2γâin + iāω0/Lx̂, (2.18)

x̂ = −Lh, (2.19)

where Ω is the sideband frequency of interest relative to the carrier ω0.

The output field is then given by,

âout = G(Ω) âin + Th→âout(Ω)h

=
Ω− iγ
Ω + iγ

âin −
√

2γāω0

Ω + iγ
h. (2.20)
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One interesting thing to note is that if we compute the amplitude and phase

quadratures for the output field, defined in Eq. (2.5), the signal is coupled only

into the output phase quadrature. Intuitively this means that in a tuned FP

(Fabry-Perot) Michelson interferometer the GW strain signal purely manifests

as phase modulation of the measured output signal. Since a photodiode mea-

sures the power of the electric field (i.e. ∼ |E(t)|2) both the amplitude and

phase quadratures are measured; the signal strength is greater if instead we

measure just the phase quadrature via homodyne measurement [4].

The system is lossless and so |G(Ω)| = 1 as expected. We are interested in

the power spectral density of the noise relative to the signal strength, thus we

define the strain-referred power spectral density,

Shh(Ω) ≡ Sâoutâout(Ω)

|Th→âout(Ω)|2
. (2.21)

Because the input-output gain is unity and the input shot noise spectrum

is white noise, Sâinâin = 1, the strain-referred power spectral density of the

quantum noise is simply given by the inverse modulus squared of the strain

transfer function,

Shh(Ω) =
1

|Th→âout(Ω)|2 =
Ω2 + γ2

2γā2ω2
0

. (2.22)

We see that we get a peak sensitivity of γ/(2ā2ω2
0) at Ω = 0 i.e. at the

arm cavity resonance, with the signal power reducing to half at the arm cavity

bandwidth Ω = γ. As discussed in Sections. 3.1 and 3.2 this is due to the

positive dispersion of the arm cavities, specifically that not all frequencies are

simultaneously resonant within the arm cavities. Note that the spectrum can

be broadened by increasing γ, however the peak sensitivity gets worse (i.e. the
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noise spectral density increases) linearly with γ. As we will discuss, this is

actually a general property of passive resonant detectors, and as discussed in

Section. 6.2.2 maybe even a property of a more general class of active resonant

detectors.
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Chapter Three

Bandwidth broadening via

negative dispersion

This chapter contains content from the first paper listed at the beginning of

the thesis and is published at Phys. Rev. D 99, 102001 [22], the entirety of

which was written by the first author Joe Bentley.

In this chapter we will discuss methods of surpassing the so-called “Mizuno

limit” of passive resonant quantum measurement devices which states that the

peak strain-referred power spectral density and detector bandwidth are pro-

portional. First we will overview this limit and its origins and then explore

methods of surpassing this limit. Specifically we will consider setups incor-

porating the concept of negative dispersion to directly broaden the detector

bandwidth without sacrificing peak sensitivity.
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3.1 Mizuno limit

Recall the tuned cavity transfer function given in Eq. (2.20), specifically the

strain transfer function. Since the vacuum shot noise has a white noise spec-

trum, the signal-to-noise ratio (SNR) can be described by the integral of the

squared magnitude of the strain transfer function over all frequencies,∫ ∞
−∞

dΩ |Th(Ω)|2 = ā2ω2
0

∫ ∞
−∞

dΩ
2γ

Ω2 + γ2
. (3.1)

We can evaluate this integral using Jordan’s lemma and Cauchy’s Residue

theorem by enclosing the simple pole at Ω = iγ and letting the contour to go

infinity, giving, ∫ ∞
−∞

dΩ |Th(Ω)|2 = ā2ω2
0, (3.2)

and so the signal sensitivity is constrained entirely by the energy stored in

the system and the carrier frequency, and not by any optical parameter of the

system itself. Approximately we can state this as saying that the detector

bandwidth (equal to γ in this case, but often not well defined) multiplied by

the peak sensitivity is a constant. This is often called the “Mizuno limit” owing

to Jun Mizuno, who showed that all passive optical systems with finite stored

energy obey this fundamental limit [23]. In this case it occurs due to the

positive dispersion of the arm cavities: when the sideband frequency is near

zero the light is resonantly enhanced by constructive interference, however as

the sideband frequency is increased the light begins to destructively interfere.

The arm cavities serve to repeatedly reflect the light, effectively increasing

the path length travelled by the light and amplifying the effect of the GW

strain on its phase. The arm cavities also resonantly enhance the carrier and
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increase the intracavity intensity, thereby reducing the relative photon number

uncertainty and thus the shot noise.

Amazingly, modern advanced GW detectors are actually coming up against

the shot-noise limit, and so this is becoming a major limiting factor, especially

in regards to high-frequency signals such as binary neutron star (BNS) mergers.

We can take three approaches to reducing the quantum noise:

1. Directly altering the quantum noise entering the system, for example

by using non-classical states of light such as via frequency-dependent

squeezing [4], which in the optimal case leads to a broadband reduction

of quantum noise across a wide frequency range, or generating squeezed

states internally in the setup as in [24].

2. Increasing the magnitude of the strain transfer function, e.g. by increas-

ing the energy stored in the system by increasing the input power, how-

ever it turns out that another major limiting noise source is the thermal

noise of the mirror coatings which increases with the input power.

3. Finally, modifying the shape of the strain transfer function using active

elements such as negative dispersion to broaden the bandwidth directly.

In this section we will focus on this last method. Specifically we will focus on

increasing the high-frequency sensitivity of gravitational-wave detectors, owing

to recent detections of binary black hole (BBH) and binary neutron star (BNS)

mergers [25]. Current ground-based gravitational-wave (GW) detectors such

as Advanced LIGO and VIRGO, as well as future proposed detectors such as

Cosmic Explorer and Einstein Telescope are all limited by the quantum shot
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noise at high frequencies and so are blind to the higher frequencies of the BNS

inspiral waveform, the measurement of which would allow the determination

of the currently unknown neutron star equation of state [6, 7]. Improving the

broadband sensitivity would also increase the SNR of currently visible events,

also increasing the range of the detector.

3.2 Unstable filter

To broaden the detection bandwidth without decreasing the peak sensitivity

we will consider introducing a medium with negative dispersion to compensate

for the phase gained in the arm cavity, creating a so-called white light cav-

ity [26, 27, 28, 29]. Previously, atomic systems have been used to classically

demonstrate bandwidth broadening via negative dispersion [30, 31, 32, 33].

Another approach, which we will take, is to use optomechanical coupling such

as the unstable optomechanical filter first described in [5] as well as more recent

work using optomechanical resonators [34]. After the bandwidth is broadened,

the Mizuno limit itself can be used to increase the peak sensitivity by decreas-

ing the broadened bandwidth, i.e. it allows us to surpass the Mizuno limit.

In this section we will justify and describe the unstable filter as a negative

dispersion device.

As discussed in Section. 2.3, in a tuned Michelson interferometer the arm

cavities are tuned to be resonant with the carrier light at frequency ω0 so that

2ω0Larm/c = 2πN where N is an integer, Larm is the arm cavity length, and

ω0 is the laser carrier frequency. A GW will induce a change in path length
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between the ITM (input test mass) and ETM (end test mass) oppositely for

both arms, modulating the carrier light resulting in signal sidebands at ω0±Ω,

with Ω being the GW signal frequency. Since the arm cavities are tuned to the

carrier light these signal sidebands will not be resonant in the arm cavities, as

they obtain an extra round-trip phase of 2ΩLarm/c away from the perfect reso-

nant condition which will therefore accrue destructively. As the GW frequency

Ω increases, as does this extra round-trip phase, leading to more destructive

interference and further reducing the signal strength. Therefore the arm cavi-

ties lead to decreasing sensitivity at higher frequencies. We therefore envisage

a negative dispersion device that gives a round-trip phase exactly cancelling

that gained in a round-trip through the arm cavity, so that the round-trip

phase gained through this device is −2ΩLarm/c. This will cancel the attenua-

tion of the signal due to positive dispersion and effectively turn the detector

into a “white-light cavity”—a cavity resonant on all frequencies—however we

will only consider first-order cancellation resulting in a finite broadening of the

bandwidth.

The unstable filter, highlighted in Fig. 3.1, is just one such realization of

a negative dispersion device, another is discussed in section. 5.1.2. It is an

optomechanical device consisting of a cavity with resonant frequency ω0 with

a fixed input mirror and a mechanically suspended end mirror as a mechanical

oscillator with mechanical resonant frequency ωm and quality factor Qm, and

with the cavity pumped by a pumping laser at frequency ω0 + ωm. Signal

sidebands at frequency ω0±Ω enter the unstable filter and beat with the pump

field at ω0 + ωm, producing a radiation pressure force of frequency ωm ± Ω
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at the mechanically suspended mirror. This force moves the mirror which

modulates the cavity field to further modify the sidebands at ω0 ± Ω, and

also modify the mirror’s mechanical motion at frequency ωm. This process is

analogous to difference frequency generation, also known as optical parametric

amplification, in non-linear optics, see for example p. 9 of [35]. It can be

shown that assuming the so-called resolved sideband regime, where the GW

sideband frequency Ω� γf � ωm, and γf is the bandwidth of the filter cavity,

and also assuming the system is in the unstable regime where the mechanical

damping rate γm ≡ ωm/Qm is much less than negative damping rate due to

the optomechanical interaction γopt, the optical transfer function of the filter

cavity takes the form,

Ω + iγopt
Ω− iγopt

≈ exp

(
−2iΩ

γopt

)
, (3.3)

where γopt ≡ g2/γf is the negative optomechanical damping rate with g—the

optomechanical coupling strength—as defined later in Eq. (3.6). In the second

approximation we assumed that γopt � Ω, giving a first-order cancellation of

the phase. The condition to exactly cancel the phase gained in the arm cavities

is therefore given by, γopt = c/Larm. Note that the system has one imaginary

pole at Ω = iγopt, and so is dynamically unstable.

Previous detector designs including the unstable filter (for example [5, 36])

have considered so-called “reflection-readout” based designs, owing to the fact

that we measure the signal reflected from the unstable filter. Generally in these

designs, the unstable filter is externally coupled to the main interferometer as

shown in Fig. 3.1 (a). Here the mechanism of broadening is intuitive, since the

signal is recycled with a negative phase shift and re-injected into the arm cavity
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to cancel the positive phase gained. However in the transmission-readout

setup discussed in the next section the mechanism is less intuitive since the

unstable filter cannot be isolated as a separate system within the entire setup.

Regardless, we will show that bandwidth broadening is still achieved.

3.3 Transmission-readout setup

Figure 3.1 Figure (a) shows a reflection-readout design such as
in [36]. The unstable filter alone is highlighted by the blue dashed
box. Figure (b) shows the new transmission-readout setup proposed
in this chapter. The SRC (signal recycling cavity) is pumped with
laser light at ω0 + ωm, and the mirror above the signal recycling mir-
ror is mechanically suspended with mechanical resonance frequency
ωm. ETM: End Test Mass, ITM: Input Test Mass, SRM: Signal Re-
cycling Mirror, iSRM: Internal SRM (to form an impedance-matched
cavity with the ITM)

The reflection-readout designs mentioned above and shown in Fig. 3.1 (a)

require drastic alterations of the detector topology, for example the conversion

of the SRM (signal recycling mirror) to a beamsplitter and also the addition

of a low-loss closed port. In this section, we introduce a simpler “transmission-
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readout” based design shown in Fig. 3.1 (b), instead requiring only the con-

version of a steering mirror into a high-frequency mechanical oscillator in the

signal recycling cavity, and the presence of a pump laser at ω0 + ωm. As an

example we apply the design to an example 4km interferometer whose pa-

rameters are described in Fig. 3.2, showing that for a detector bandwidth of

1.8 kHz the shot noise can be reduced by 10 decibels as shown in Fig. 3.2 (b),

however the bandwidth improvement is limited compared to reflection-readout

designs as discussed toward the end of Sec. 3.3.1. We also use a mirror mass of

m = 10 mg, and so for a fused silica (density ρ = 2.17 Mg m−3) and assuming

a depth of 5 mm leads to a mirror diameter of 5 cm which is greater than the

beam waist in the signal recycling cavity. Additionally the mirror eigenfre-

quency is given by ωm = 2π × 105 Hz. The enhancement factor over a tuned

Michelson as a function of final detector bandwidth is shown in Fig. 3.2 (a).

3.3.1 Analysis

In this section we outline the analysis of the transmission-readout setup—a

simplified version of which is shown in Fig. 3.3 by focusing on the differential

mode only. In comparison to the reflection-readout setup in Fig. 3.1 (a) the

arm cavity is no longer coupled directly to the dark port. Instead the arm

cavity and filter cavity form an effective three-mirror cavity similar to the twin

signal-recycling scheme studied in [37, 38], except with one cavity replaced with

the optomechanical filter cavity.

To analyse the system we use a Hamiltonian-based approach as in sec-

tion. 2.3, which was also used to analyse the reflection-readout setup in [5].
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Figure 3.2 Figure (a) shows the peak sensitivity improvement ratio
of the transmission-readout setup to a tuned signal-recycled Michelson
interferometer as a function of broadened detector bandwidth Γdetector

as given in Eq. (3.35). Here advanced LIGO parameters are used (4 km
arm length, 40 kg test mass, 800 kW arm power), and additionally an
ITM transmissivity of 0.045 and SRM transmissivity of 0.0003 are
used. The SRC length solved for the detector bandwidth is also plot-
ted to show how it could be varied to improve the peak sensitivity with
these transmissivities. The dotted line is plotted for our chosen SRC
length of 20 m, giving a detector bandwidth of around 1790 Hz, and
therefore an enhancement factor of 10 dB. The circled value and inset
highlights the chosen values used in figure (b), which shows the total
quantum noise with the unstable filter mirror at zero temperature.
The tuned Michelson bandwidth set to the effective bandwidth of the
new transmission readout setup as discussed at the end of Sec. 3.3.1.
We also assume 10 dB frequency-dependent squeezing over the entire
frequency range as outlined in [4].
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Figure 3.3 Figure showing the setup analysed in Sec. 3.3.1, which
is a simplified version of Fig. 3.1 (b). â describes the unstable filter
cavity mode, Â describes the differential arm cavity mode, b̂ is the
mirror oscillation mode, h is the GW strain signal, and the mirror is
coupled to an external heat bath described by the continuum field b̂th,
shown by the dotted line. The cavity field â is coupled to the external
continuum fields âin, âout.

This approach is valid under the single-mode approximation where the GW

sideband frequency Ω/(2π) � FSR where FSR is the free spectral range of

either the SRC or arm cavities, i.e. only modes within one free spectral range

are considered. This can be important for long-baseline facilities such as the

40 km Cosmic Explorer where the free spectral range is only 3.75 kHz.

The approach consists of first writing the Hamiltonian for the system,

which, referring again to Fig. 3.3, consists of SRC mode â and differential

arm cavity mode Â, as well as a mechanically suspended mirror which is mod-

elled as a damped-driven harmonic oscillator with resonant frequency ωm and

mechanical damping rate γm which is described by mode b̂. The mirror is ad-

ditionally coupled to an external continuum of modes b̂th which represents an

external heat bath. The equations of motion are then computed using Heisen-

berg’s equations of motion which are then solved in the frequency-domain to

give an equation for an output field at the dark port âout in terms of input

fields âin and the GW strain h. The two-photon quadratures [39, 4] are then
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computed, and hence the spectral density for the quadrature operators. The

external fields âin, âout, and b̂th describe a freely propagating continuum of

modes as in [18].

The total Hamiltonian is given by Ĥtot = Ĥ0 + Ĥfilter
int + ĤETM

int + Ĥγf +

Ĥγm + Ĥγarm . Here Ĥ0 is the free part, Ĥfilter
int describes the interaction between

the SRC mode and the mechanically suspended mirror, ĤETM
int describes the

radiation pressure coupling between the ETM and arm cavity field as well as

to the GW strain (we choose the ITM to be static without loss of generality),

Ĥγf describes the coupling of the SRC to the external continuous vacuum

field (the dark port) as discussed in [17]1 and γf = TSRMc/(4LSRC)—where

TSRM is the SRM power transmissivity and LSRC is the length of the signal

recycling cavity—is the coupling constant of the SRC to the external field,

Ĥγm describes the coupling of the mirror to the external heat bath b̂th with

coupling constant γm = ωm/Qm—where ωm is the mirror eigenfrequency and

Qm is the mechanical quality factor—whose equation of motion will be the

quantum Langevin equation [15] [19, p. 158], and finally Ĥγarm describes the

coupling between the SRC and the arm cavity [37, 38].

The free Hamiltonian Ĥ0 is given by,

Ĥ0 =
p̂2

2m
+

1

2
mω2

mx̂
2 + ~ω0â

†â+ ~ω0Â
†Â+

P̂ 2

2M
, (3.4)

1The method in [17] reproduces the quantum Langevin equation of [15] and [19, p. 158],

and also [40, 41], in which the setup is known as input-output theory of open quantum

systems [41]. Note that a simple cavity coupled to an external bosonic field is mechanically

equivalent to a mechanical mass coupled to an external heat bath, as evident by comparing

equations (3.10) and (3.11)
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where P̂ is the differential arm momentum, and M = mtest/4 is the reduced

mass of the differential mechanical mode X̂, which is coupled to the differential

arm cavity mode Â, and mtest being the actual mirror mass [20, 21]; ω0 is the

carrier frequency of the main interferometer laser and also the resonant fre-

quency of the arm cavities; p̂ is the momentum of the mechanically suspended

mirror, x̂ is its position, and m is its mass. The mirror pendulum frequency

is assumed to be very low compared to any frequency of interest and thus we

neglect it in the dynamics. The filter cavity field â is pumped by a laser at

frequency ω0 + ωm resulting in a mean photon number ā. The linearised (us-

ing the same process as in section. 2.2) filter interaction Hamiltonian is given

by [17, 41, 5],

Ĥfilter
int = −~g0[âei(ω0+ωm)t + â†e−i(ω0+ωm)t]x̂, (3.5)

where g0 = (ω0/Lf )ā, ā = [2PfLf/(~ω0c)]
1/2, where Pf is the circulating

power in the filter cavity and Lf is the length of the filter cavity. The mirror

displacement can be written in the Heisenberg picture as x̂ = xq(b̂e
−iωmt +

b̂†eiωmt), where xq is the ground-state harmonic oscillator position uncertainty,

xq =
√
~/(2mωm). We then move into the rotating frame at ω0 and disregard

the ω0 + 2ωm sideband by invoking the rotating wave approximation (RWA),

since γf � ωm for any frequency of interest, however this approximation

should be relaxed for a full analysis. The interaction Hamiltonian therefore

becomes, [5]

Ĥfilter
int ≈ −~g(âb̂+ â†b̂†), (3.6)

where g = g0xq.
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For the ETM dynamics we have a term due to the effective GW inter-

action with the mirror, and another due to the linearised radiation pressure

interaction between the mirror and arm cavity field,

ĤETM
int = FGWX̂ − ~G0(Â+ Â†)X̂, (3.7)

where FGW = MLarmḧ is the GW tidal force, G0 = ω0/LarmĀ, and Ā =

[2ParmLarm/(~ω0c)]
1/2, where Parm is the arm cavity power, Larm is the arm

cavity length.

Finally as in Eq. (2.11) there is the transfer of excitation between the SRC

and arm cavity [37, 38], which leads to the interaction term,

Ĥγarm = i~ωS(âÂ† − â†Â), (3.8)

where ωS ≈
√
cγarm/LSRC is called the “sloshing frequency”, with LSRC being

the length of the signal-recycling cavity, and γarm = TITMc/(4Larm) is the arm

cavity bandwidth, with TITM being the power transmissivity of the ITM.

Therefore we obtain the full set of equations of motion,

âout = âin −
√

2γf â (3.9)

˙̂a+ γf â = igb̂† +
√

2γf âin − ωSÂ (3.10)

˙̂
b+ γmb̂ = igâ† +

√
2γmb̂th (3.11)

˙̂
A = ωS â+ iG0X̂ (3.12)

˙̂
X = P̂ /M (3.13)

˙̂
P = −MLḧ+ ~G0(Â+ Â†), (3.14)

where γf is the filter cavity bandwidth as defined above.
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To analyse the stability of the system, the dynamical matrix can be read

off of Eqs. (3.10)–(3.12) as,

A =


−γf ig −ωs
−ig −γm 0

ωs 0 0

 , (3.15)

where the state vector is x = (â, b̂†, Â)T . Since γm � ωs, γf , ωs we set γm to

zero. The eigenvalues are then {0, 1
2

(
−γf ±

√
γ2
f + 4g2 − 4ω2

s

)
}. For g > ωs,

which is the regime that we use to achieve the improvement in this chapter,

there is an eigenvalue with positive real part, and so the system is dynamically

unstable. For g ≤ ωs the eigenvalues have a negative (or zero) real part and

so the system is dynamically stable.

These equations are then transformed to the frequency domain, noting

that the property of the Fourier transform F
[
â†(t)

]
= (â†)(−Ω) which we

will simply denote as â†(−Ω), which represents the amplitude of the lower

sideband. The equations are then solved to calculate the output field âout(Ω)

in terms of the input fields âin(Ω), â†in(−Ω) and the GW strain signal h(Ω).

Note that since h(t) is real, h(Ω) = h∗(−Ω). From these transfer functions an

input-output relation for the sidebands can be constructed of the form, âout(Ω)

a†out(−Ω)

 ≡Ms

 âin(Ω)

â†in(−Ω)

+ Mth
s

 b̂th(Ω)

b̂†th(−Ω)

+ ~Dsh(Ω), (3.16)

where Ms is the transfer matrix of the input field to the output field at the

dark port for the single-photon (sideband) modes, representing the overall

linearised dynamics of the system, similarly Mth
s is the transfer matrix for the
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thermal noise to the dark port output field, and ~Ds represents the linearised

coupling of the GW strain signal into the upper and lower sidebands of the

dark port output field.

There is another independent contribution to the quantum noise: the ther-

mal noise arising from the coupling of the mechanically suspended mirror to

the fluctuating environmental heat bath b̂th at temperature T . As shown

in Appendix. B, the heat bath provides random thermal fluctuations whose

statistics are determined by the Bose-Einstein distribution,

Sb̂thb̂th(Ω) = 1 +
2

e
~ω0
kBT − 1

. (3.17)

When the thermal occupation number is high, i.e. kBT � ~ωm, this leads to

a spectral density given approximately by [41, 5],

Sb̂thb̂th(Ω) =
2kBT

~ωm
. (3.18)

To calculate the power spectral density (PSD) due to the quantum noise we

use the two-photon formalism using quadrature operators â1, â2—respectively

called the amplitude and phase quadratures—with the input quadratures at

the dark port having a flat spectral density equal to unity. These quadrature

operators are related to the single-photon (sideband) operators by a unitary

transformation,â1

â2

 =
1√
2

 1 1

−i i


 â(Ω)

â†(−Ω)

 ≡ U

 â(Ω)

â†(−Ω)

 . (3.19)

We need to compute the transfer functions between the output quadratures
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and the input quadratures and strain signal of the form,âout1

âout2

 = Mq

âin1
âin2

+ Mth
q

b̂th1
b̂th2

+ ~Dqh(Ω), (3.20)

where âin1,2 and âout1,2 are the quadratures at the optical input and output port

respectively, and b̂th1,2 are the quadratures input from the thermal heat bath. As

shown in Appendix. A, the relation between the quadrature transfer matrices

and the sideband transfer matrices in Eq. (3.16) are given by,

Mq = UMsU†, Mth
q = UMth

s U†, ~Dq = U ~Ds. (3.21)

The output quadrature operator for a homodyne measurement with ho-

modyne angle ζ is given by âoutζ = (âout1 , âout2 ) · (cos ζ, sin ζ)T . To calculate the

spectral density we first separate the output quadrature into a zero-mean noise

term and a mean signal term, âoutζ = ∆âoutζ + 〈âoutζ 〉, where,

∆âoutζ =


Mq

âin1
âin2



T

+

Mth
q

b̂th1
b̂th2



T ·

cos ζ

sin ζ

 , (3.22)

|〈âoutζ 〉|2 = | ~D(1)
q cos ζ + ~D(2)

q sin ζ|2|h|2 (3.23)

where ~D(i)
q is the i-th element of ~Dq.

The single-sided PSD SOO(Ω) of an operator Ô(Ω) for an input vacuum

state |0〉 is given by the symmetrised covariance, [4, 42, 40]

〈0|Ô(Ω)Ô†(Ω′)|0〉sym = π SOO(Ω)δ(Ω− Ω′). (3.24)

First calculating the vacuum noise for âoutζ , using that 〈0|âini (Ω) âin †j (Ω′)|0〉sym =

π δijδ(Ω − Ω′), and then dividing by the strain transfer function, we find the
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PSD of the vacuum noise superimposed on the strain measurement is,

Sζh(Ω) =
(cos ζ, sin ζ)Mq(Ω)M†q(Ω)(cos ζ, sin ζ)T

| ~D(1)
q cos ζ + ~D

(2)
q sin ζ|2

. (3.25)

We will assume an ideal phase quadrature measurement (ζ = π/2) at

the photodiode, in which case we are only concerned about the output phase

quadrature âout2 . In this case we have,

Sh(Ω) =
|M(2,1)

q (Ω)|2 + |M(2,2)
q (Ω)|2

| ~D(2)
q |2

≡ Srp
vacuum(Ω) + Sshot

vacuum(Ω), (3.26)

where the first term is the noise contribution due to the radiation pressure

while the latter is due to the shot noise.

We can follow the same process as above to find the thermal noise fluctu-

ations arising from thermal noise quadrature operators b̂th1,2, noting that the

spectral density for the heat bath is given by Eq. (3.18).

For both the vacuum and thermal noise we define the shot-noise contribu-

tions Sshot
vacuum(Ω) and Sshot

thermal(Ω) as the spectral density contribution remaining

when the mass M → ∞, and the radiation-pressure contributions Srp
vacuum(Ω)

and Srp
thermal(Ω) as the term remaining when the shot-noise contribution is sub-

tracted from the total spectrum.

Assuming that γm � Ω, we find that the strain-referred shot-noise limited

PSD is given by,

Sshot
h (Ω) =

Ω2γ2
f + (g2 − ω2

S + Ω2)
2

4G2
0L

2
armγfω

2
S

+
g2γm

(
2kBT
~ωm

+ 1
)

G2
0L

2
armω

2
S

, (3.27)

and the radiation-pressure limited PSD is given by,

Srp
h (Ω) =

4G2
0~2ω2

S

M2Ω4L2
arm

[
Ω2γ2

f + (g2 − ω2
S + Ω2)

2
] [γf +

g2γm
Ω2

(
2kBT

~ωm
+ 1

)]
,

(3.28)
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where in both cases the former term is the vacuum contribution and the latter

term ∝ γm is the thermal contribution.

The total strain-referred vacuum-limited PSD can be written in the form,

Svacuum(Ω) ≡ Sh(Ω)|T=0 =

(
1

K +K
)
h2
SQL

2
≥ h2

SQL. (3.29)

Here h2
SQL ≡ 2~/(MΩ2L2

arm) = 8~/(mtestΩ
2L2

arm) is the standard quantum

limit [42, 4, 13], and K is a dimensionless factor given by,

K ≡ 8Parmω0

MLarmc

γfω
2
S

Ω2
(
Ω2γ2

f + (g2 + Ω2 − ω2
S)2
) , (3.30)

where the radiation pressure coupling constant G0 has been written out fully.

The transmission-readout shot noise spectral density (given by Eq. (3.27))

matches peak sensitivity (shot noise PSD at Ω = 0) of a tuned signal-recycled

Michelson interferometer if we have the condition,

g2 = ω2
S + γfωS, (3.31)

and we set the tuned signal-recycled Michelson detector bandwidth γdetector =

γf . In this case the peak sensitivity for both the transmission readout setup

and tuned Michelson is given by,

Sshot
trans(Ω = 0) = Sshot

tuned(Ω = 0) =
γf

4G2
0L

2
arm

. (3.32)

The broadened effective detector bandwidth of the transmission readout

setup can be shown to be on the order of √γfωS, or in terms of optical pa-

rameters,

Γdetector ∼
c

2
√

2

[
TITMT

2
SRM

LarmL3
SRC

]1/4

. (3.33)
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To compare the shot noise limited sensitivity of our setup to a tuned signal-

recycled Michelson interferometer, we set the tuned Michelson detector band-

width to be equal to the effective bandwidth of the transmission readout setup,

i.e. γdetector = Γdetector (=
√
γfωS). In this case the improvement ratio of the

peak power spectral densities, i.e. the power ratio of the tuned Michelson to

transmission readout setup shot noise power spectral densities at low frequen-

cies, is given by,

η ≡ Sshot
tuned(Ω = 0)

Sshot
trans(Ω = 0)

=

√
γfωS

γf
=

√
ωS
γf

(3.34)

Figure 3.4 Surface plot showing the peak sensitivity improvement
power ratio of the transmission-readout setup to a tuned Michelson
as a function of both detector bandwidth Γdetector and arm length,
showing the (log) inverse cube-root dependence of the enhancement
factor on the arm length. The parameters are as in Fig. 3.2.

By solving Eq. (3.33) for the SRC length, the above improvement factor
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can be written in terms of the effective bandwidth, arm length, and SRM and

ITM power transmissivities as,

η =

(
cTITM

ΓdetectorLarmTSRM

)1/3

. (3.35)

This quantity is shown for various detector bandwidths in Fig. 3.2 (a), and

a surface plot for various arm lengths is shown in Fig. 3.4. Note that it

is proportional to (TITM/TSRM)1/3, however if the ITM transmissivity TITM is

increased then the arm cavity intracavity power will be decreased and hence the

shot noise increased, thereby requiring a higher input power. Similarly if the

SRM transmissivity TSRM is very small then losses start to dominate. Finally,

note that the enhancement factor for a given effective detector bandwidth

decreases as the inverse cube root of the arm cavity length Larm.

For both the shot noise and radiation pressure it was found that the ra-

tio of the absolute value squared of the thermal fluctuation to the vacuum

fluctuation noise has the form of a “low-pass filter”. For the shot noise ratio

we assume the resolved sideband regime, whereas for the radiation pressure

ratio no approximation is made. For the shot noise the effective cutoff fre-

quency is (g2 − ω2
S)/γf . Note that when the replacement g2 = ω2

S + γfωS is

performed, as described later, the cutoff frequency becomes ωS. Therefore the

thermal noise is suppressed relative to the vacuum noise at high frequencies

where shot noise dominates, however for γm � Ω we find that the contribu-

tion is approximately flat as shown in Eq. (3.27). For the radiation pressure

term, the cutoff frequency γm is very small compared to Ω, however the gain

g2/(γfγm) ≡ γopt/γm is very large, and so at low frequencies the thermal noise

is much greater than the vacuum noise. Intuitively, at low frequencies the
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Figure 3.5 Figure showing the total quantum noise of the
transmission-readout setup after including the thermal noise at var-
ious environmental temperatures, using the parameters in Fig. 3.2,
including the detector bandwidth marked by the black circle (∼
1800 Hz). At low frequencies the thermal noise is amplified relative to
the vacuum noise, while at high frequencies it has a flat spectrum.

thermal heat bath fluctuations are amplified by the response function of the

mechanically suspended mirror in the filter cavity. The total quantum noise

plot is shown in Fig. 3.5. Note that for γm � Ω the high-frequency thermal

noise contribution is balanced by the diminishing strain response and has a

flat spectrum as shown in Eq. (3.27).
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Local
sensing
laser

Figure 3.6 Figure showing an example of the local sensing control
scheme applied to the transmission-readout setup. A control force
fc(t) is applied to the mechanically suspended mirror, whose displace-
ment is read out by the local sensing laser. The local sensing readout
and main readout are optimally combined by coefficients k1 and k2 to
recover the bandwidth broadened sensitivity.

3.3.2 Discussion

As shown above, the amplitude improvement goes as the square root of the

effective bandwidth, while the decrease in peak sensitivity of the transmission

readout setup goes as the effective bandwidth, and therefore we are limited

in the improvement we can achieve before we start to degrade the overall

sensitivity. For the previous reflection-readout setups, the effective bandwidth

is given by (γfωS refl
2)1/3 (where the sloshing frequency ωS refl =

√
cγf/Larm is

defined differently to our analysis since we are measuring in reflection of the
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unstable filter cavity rather than in transmission [5]), however in that case

it can be increased further by decreasing the filter cavity length or increasing

the ETM transmissivity without adversely affecting the shot noise or radiation

pressure noise.

There is also strong coupling of the thermal noise into the unstable filter,

putting a strict requirement on the environmental temperature. This can be

mitigated using the optical dilution outlined in [43, 44, 45, 46, 47], stiffen-

ing the dynamics of the suspended mirror, although further R&D is required

and ongoing to fabricate mechanical resonators with higher quality factors via

optical dilution or other methods [48, 49, 50, 51, 52]. The thermal noise spec-

trum in this chapter differs from the flat thermal noise spectrum in previous

designs [5, 36] since in this case the thermal heat bath fluctuations are fully

shaped by the interferometer, except coupled indirectly by the mechanically

suspended mirror. Overall it was found that at low frequencies the thermal

noise contribution follows the vacuum noise except it is significantly larger

by a factor γopt/γm � 1, while the high-frequency thermal noise has a flat

contribution.

Another issue is the control of the unstable dynamics of the system. Previ-

ously in [5] a stabilizing controller was constructed, however the time delay of

the control signal from the arm cavities to the unstable filter were neglected.

If they are included, it can be shown that the achievable phase margin will

be very small. One other option is to use local sensing control to locally con-

trol the unstable filter, eliminating the time delay. Unfortunately, this will

impart significant additional noise on the measurement readout, however as
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Denis Martynov has discovered this local sensing noise can be cancelled out

in post-processing by combining the local sensing readout and main readout

optimally. An example of a local sensing control scheme for the transmission

readout setup is given in Fig. 3.6.

Finally, for the analysis of future long-baseline GW detectors we need to

relax the single-mode approximation, as well as the resolved sideband regime

approximation which is manifested in the analysis as the rotating wave ap-

proximation, specifically that γf � ωm and so we could ignore the sideband

around ω + 2ωm.
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Chapter Four

Local sensing control

The unstable filter, or indeed any system with unstable dynamics, needs some

form of control in order to be physically realised. In this section we will briefly

overview some concepts used in the control of dynamical systems, as well as

considering a method of locally controlling unstable systems while removing

the added local control noise in post-processing.

4.1 Brief overview of control theory

In this section we will briefly review the state-space formalism for describ-

ing linear dynamical systems, which will be also used extensively throughout

Chapter 5, and also discuss negative feedback and stability.

The most general system we will consider has linear dynamics and an

arbitrary number of input and output ports. Such a system can be fully
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described by two equations,

ẋ(t) = Ax(t) +B u(t), (4.1)

y(t) = C x(t) +D u(t), (4.2)

where x = (x1; . . . ;xn)T are the states of the system, describing the n internal

degrees-of-freedom of the system, u = (u1; . . . ;ul)
T are the l inputs to the

system, and y = (y1; . . . ; ym)T are the m outputs of the system. The matrix

A ∈ Cn×n describes the internal dynamics of the system, B ∈ Cn×l describes

the coupling of the input into the internal degrees of freedom, C ∈ Cm×n

describes the coupling of the internal degrees of freedom into the outputs of

the system, and D ∈ Cm×l describes the “direct-feed” of the inputs to the

outputs. If the system has one input and one output we call it a SISO (single-

input single-output) system, if it has more than one input and more than one

output we call it a MIMO (multiple-input multiple-output) system, similarly

we can have SIMO (single-input multiple-output) or MISO (multiple-input

single-output) systems. It can be easily shown by solving Eq. (4.1) and then

diagonalising A that the system is dynamically stable given some fixed initial

condition if <{λi} < 0, ∀i where λi is the i-th eigenvalue of the dynamical

matrix A [53].

We define the Laplace transform for a function f(t) as,

f(s) =

∫ ∞
0−

dt e+stf(t). (4.3)

Note that s is not negated in the exponent, differing from other, possibly

more common, conventions. s = r+ iΩ is generally a complex number, with r
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describing some exponential growth or decay and Ω labelling a Fourier com-

ponent of the oscillation.

By taking the Laplace transform of the Eqs. (4.1) and (4.2) and then

eliminating the internal degrees of freedom we can derive the transfer matrix,

G(s) = C(−sI − A)−1B +D, (4.4)

where G(s) ∈ Cm×l and yi(s) =
∑

j Gi,j(s)uj(s). For simplicity we now focus

on a SISO system and thus consider the transfer function G(s). Generally this

is in a pole-zero form,

G(s) =
B(s)

A(s)
=

∏n
i=1(s+ bi)∏m
j=1(s+ aj)

, (4.5)

with B(s) and A(s) being finite-order polynomials in s. The zeroes of B(s)

are called the zeroes of the system, while the zeroes of A(s) are called the

poles of the system. The poles are called simple poles if none of the aj are

degenerate [54]. In our Laplace convention, an unstable pole occurs when

any of the aj have a negative real part (since the Laplace transform of an

exponential growth is a simple pole). However, in cases where a simple zero

cancels a simple pole the instability disappears.

Figure 4.1 A block diagram showing the open-loop dynamics G(s)
modified using a controller K(s), with the loop then closed via nega-
tive feedback r′ = r − y.
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We usually refer to G(s) as the open-loop transfer function (or matrix)

in contrast to the closed-loop when a controller is added. In this case we

apply a control signal r as an input to the system but first pass it through a

controller K(s) which seeks to modify the dynamics of the system in some way,

e.g. speeding up slow dynamics of the system or stabilising the system. We

then feed-back the output of G(s) into the control signal via negative feedback,

so that the input to the controller becomes r′ = r − y. By “closing the loop”

we discover the closed-loop transfer function,

K(s)G(s)

1 +K(s)G(s)
. (4.6)

The closed-loop system is unstable when K(s)G(s) = −1, i.e. when it has

unity gain and a π phase delay. One crucial part of designing a controller

is considering the gain margin: the difference between the actual gain and

unity gain at the π phase shift; and the phase margin: the difference between

the actual phase and π at the unity gain. If one of these is too small then

fluctuations in the physical parameters determining K(s) or G(s) could cause

the closed-loop system to become unstable.

4.2 Transmission-readout setup

As discussed in sections. 3.2 and 5.1.2, the Laplace-domain transfer function

for the unstable filter is given by,

G(s) =
s− γneg
s+ γneg

, (4.7)
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Figure 4.2 The transmission readout setup discussed in Section. 3.3
augmented with a heterodyne readout shown in the black dashed box.
A small part of the output beam is picked off with a low reflectivity
beamsplitter, and mixed with a local oscillator offset by the mechani-
cal oscillator frequency, allowing the observation of both quadratures
of the mirror displacement.

and so since the system has a simple pole at s = −γneg it is unstable. This

means that when used in isolation or used as a coherent feedback filter in a

quantum measurement device as shown in Figure. 3.1 (a) a stabilising con-

troller must be used as shown in [5].

As discussed in Section. 3.3, the transmission-readout setup shown in Fig-

ure. 3.1 (b) is somewhat less intuitive as the unstable filter does not exist as

a separate black-box device within the setup, but rather is integrated within

the system. Regardless, as shown in Section. 3.3.1 for the parameters used the

system is still dynamically unstable.

First, we consider the unstable case where g > ωs. Similarly to the
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reflection-readout case considered in [5] the system will not be controllable if

we use homodyne measurement and only measure the phase quadrature since

only one of the two quadratures of the suspended mirror will be observed.

Therefore, as shown in Figure. 4.2, we pick off a small part of the output

signal for control purposes and use heterodyne measurement to measure both

mirror quadratures. In contrast to the reflection-readout case, we measure the

SRC mode â and so the readout vector is D = (1, 0, 0), while the control input

vector B = (0, 1, 0)T remains the same, i.e. it is linear to b̂†. The observability

and controllability matrices are defined respectively by,

Uo =



C

CA

CA2

...

CAn−1


, (4.8)

and,

Uc =

[
B AB A2B · · · An−1B

]
, (4.9)

where n is the number of states. Since both matrices are full rank the system

is controllable and observable [53], and so the stabilising controller (from â to

b̂†) may be immediately written down as shown in [5].

Now, let us consider the case where g = ωs; specifically, when g approaches

ωs from below, the system will be stable. Interestingly, as seen in Eq. (3.27),

the signal response at DC is infinite so long as the upper mechanical sideband

about ω0 + 2ωm is neglected.
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4.3 Local Control

One concern of the above control schemes is the time delay between the readout

and the applied control. It is well known that time delays affect the maximum

allowed controller gain before the system begins to self-oscillate [53], as well as

reducing the phase margin of the stabilised system. In our case, this becomes

a problem when the mechanically suspended mirror of the unstable filter is

placed far away from the readout port. For example, in the reflection-readout

setup the unstable filter can be placed on the ends of the arm cavities. In a

20 km arm-length there is a minimum time delay of 66 µs between the con-

trol signal and the readout, which could become significant especially if high

feedback gains are required.

One solution, as shown in Figure. 3.6, is to use a local sensing laser to

directly measure the displacement of the mechanically oscillating mirror, and

then use a feedback loop to control the mirror, while still also reading out at

the main port of the interferometer. The control force fc(t) can be applied, for

example, by modulating the amplitude of the local sensing laser to produce a

radiation pressure force at the mirror.

Unfortunately, introducing the local sensing laser injects a significant amount

of extra quantum noise from the laser. Altogether we have the input vacuum

fluctuations at the dark port n1, the radiation pressure noise due to the ran-

dom fluctuations of the local sensing laser power n2, and the local sensing

laser noise n3. However, in post-processing we can cancel out the local sens-

ing noise by minimising the noise power to recover the bandwidth-enhanced

sensitivity. Since it is performed in post-processing the time delay between
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the local sensing readout and the main readout is no longer relevant. This

process is effectively a matched filter, since we are using our full knowledge of

the noise coupling and spectral densities to design a filter perfectly cancelling

the noise. For an overview of matched filtering see, for example, the appendix

of [55].

There are now two readouts, the main readout s1, and the local sensing

readout s2, both of which include the GW strain signal h. We assume that the

two readouts are linear combinations of the GW strain signal and the noise

sources,

s1 = ξ0h+
3∑
i=1

ξini, s2 = η0h+
3∑
i=1

ηini. (4.10)

where we have prior knowledge of the transfer functions ξi, ηi, i = 0 . . . 3. We

then combine the two readouts to give the optimal estimate via the coefficients

k1, k2,

s = k1s1 + k2s2. (4.11)

Next, we assert that the coefficients are normalised with respect to the GW

strain coefficients,

k1ξ0 + k2η0 = 1 =⇒ k1 =
1

ξ0

(1− k2η0). (4.12)

The optimal estimate therefore becomes,

s = h+
3∑
i=1

(k1ξi + k2ηi)ni = signal + noise, (4.13)

and the total noise power is then given by,

3∑
i=1

Sii|k1ξi + k2ηi|2, (4.14)
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where Sii is the power spectral density of noise source ni. This is equal to the

reciprocal of the signal-to-noise ratio (SNR), i.e. it is the noise-to-signal ratio

(NSR), because of the normalisation in eq. (4.12).

We now minimise eq. (4.14) with respect to the coefficient k2, subject to

the constraint of eq. (4.12). This can be done by substituting for k1 in terms

of k2, differentiating by k2, and then setting to zero, yielding,

k∗2 = −

3∑
i=1

(
ξ∗i
ξ∗0

)(
ηi − η0

ξi
ξ0

)
Sii

3∑
i=1

(
ηi − η0

ξi
ξ0

)(
η∗i − η∗0

ξ∗i
ξ∗0

)
Sii

. (4.15)

By combining the readouts with the above equation we can completely

recover the bandwidth-enhanced sensitivity while controlling the unstable fil-

ter. We can also reduce the local sensing laser power arbitrarily to reduce the

back-action noise and increase the local sensing noise, limited only by the local

sensing laser needing enough sensitivity to be able to detect the mirror mo-

tion, since we can subtract out the local sensing noise to an arbitrary degree.

However, its implementation in a setup such as shown in Figure. 3.6 is a ques-

tion of ongoing research, for example both upper and lower sidebands need to

be observed by the local sensing laser and processed by the controller to be

stabilised. Therefore the control scheme demonstrated in the aforementioned

figure may not realise the necessary control.
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Chapter Five

Frequency-domain quantum

network synthesis

This chapter contains content from the second paper listed at the beginning

of the thesis and is published at Phys. Rev. A 103, 013707 [56] the entirety of

which was written by the first author Joe Bentley.

In this chapter we will detail a novel set of techniques for the synthesis

of quantum systems directly from their frequency domain transfer functions.

The primary motivation arises from the synthesis of classical networks. For

example, as shown in [10] it is trivial to construct a physical realisation of any

set of linear classical state-space (A,B,C,D) simply by using a mixture of

feedback and integrators (i.e. resistors and operational amplifiers), which begs

the question of whether or not this would be possible for quantum systems,

such as are relevant in high-precision measurements. This is in stark con-

trast to conventional methods for developing such systems which instead rely

on physical intuition and experimentation to produce any desired behaviour,
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which limits the complexity of systems we can design to our understanding of

such systems.

Quantum systems propose unique constraints compared to classical sys-

tems. Most notably, any Hamiltonian evolution of the system via the system’s

dynamical equations must preserve all the commutation relations of the sys-

tem, which leads to constraints on the possible state-space representations. In

section. 5.1.1 we give a detailed analysis of how to achieve this for a system

with one internal degree-of-freedom.

5.1 Applying network synthesis to high-precision

measurements

In high-precision measurements, our understanding of physics is predominantly

limited by quantum noise, arising due to the fundamental quantum fluctua-

tions of the probing fields [57, 58, 19, 40]. This is particularly true for laser

interferometric gravitational-wave detectors [59] where the quantum shot noise

dominates at high frequencies due to the positive dispersion of the arm cav-

ities [60]. Quantum and classical noises are also limiting factors in quantum

optomechanical experiments [17, 41] and searches for new physics using an

interferometer [1, 2]. To achieve a maximal signal-to-noise ratio, it is essential

to engineer the frequency-dependent response of the measurement devices de-

pending on the frequency content of the signal being measured. For example,

advanced gravitational wave detectors are tuned to have maximum sensitivity

in a frequency range containing the binary black hole inspiral waveform, how-
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ever not all of the binary neutron star inspiral waveform is observed [25]. Quan-

tum filters are designed to engineer this response. As illustrated in Fig. 5.1,

there are three ways that the measurement device can be augmented with

quantum filters. First, the input filter, coupling the noise input to the probe

degrees of freedom, shapes how the quantum fluctuations enter the device.

Next, the coherent feedback filter, coupled to the probe degrees of freedom

and input-output fields, modifies the dynamics of the probe [8, 61, 62, 63].

This can enhance the response to the signal of interest when the quantum

system is converted into a probe coupled to a classical signal. Finally, the out-

put filter, coupling the probe degrees of freedom to the readout port, modifies

the response of readout to the detector’s output field. As a simple exam-

ple, an optical Fabry-Perot cavity is used as an input filter for implementing

frequency-dependent squeezed light [4, 64, 65].

Until now, formulating a physical realisation of a given quantum filter with

a desired frequency response required a combination of intuition and prior ex-

perience, making more complicated frequency responses difficult to engineer.

As first introduced in [8] and further discussed in [66][67, Chapter 2] we use the

concept of physical realisability which tells us whether a given time-domain

state-space representation of the system obeys quantum mechanics. An im-

portant observation comes from comparing the state-space representation of

the system and its counterpart representation as a frequency-domain trans-

fer matrix, specifically that the mapping from the system’s transfer matrix to

a state-space representation is not unique, in fact many different state-space

representations are possible. Therefore requiring that the state-space is phys-
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ically realisable sets a significant constraint on the range of this mapping. We

can then choose a state-space chosen from the range and transform it to one

which is physically realisable to infer the actual physical dynamics. Using

this technique, in this paper we now present an approach to systematically

realising quantum filters for high-precision measurements directly from their

frequency-domain transfer matrices. This technique builds upon a general for-

malism for describing linear stochastic quantum networks and the synthesis of

such networks, recently developed by the quantum control community [68, 8,

66, 69, 70, 71, 10, 72, 73, 74, 75, 67, 76, 77]. It has powerful implications on

how active quantum filters are designed, making the realisation of filters with

arbitrarily complicated frequency responses a possibility. Since in principle we

can view the entire measurement device as a many degrees-of-freedom quan-

tum filter, this approach also provides a new paradigm for designing optimal

quantum measurement devices.

5.1.1 Direct approach

We now provide the details of the approach. The process to find a physical re-

alisation, e.g. an optical layout and its associated parameters, from a given set

of transfer functions is general to multi-input multi-output lossless linear quan-

tum systems; losses and other noise sources can be added later by augmenting

the system description. Our starting point is the frequency-domain transfer

function matrix, which is the square matrix that relates the frequency-domain
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readout
e.g. homodyneprobe

signal coherent 
feedback 

filter

output
filter

input
filter

input
e.g. squeezed

light

Figure 5.1 Flowchart illustrating the different places quantum filters
can be used within a quantum measurement device. We consider a
generic device consisting of a probe (e.g. a mirror-endowed test mass
or an atomic ensemble) coupled to some classical signal, which receives
an input (e.g. non-classical squeezed light) and whose output field is
measured by the readout scheme (e.g.homodyne readout).

system outputs y(s) to its inputs u(s):

G(s) = C(−sI − A)−1B +D, (5.1)

yi(s) =
∑
j

Gij(s)uj(s),

where (A,B,C,D) are the system matrices as defined below, and I is the iden-

tity matrix, and we assume that the number of inputs is equal to the number

of outputs. Here the Laplace transform is defined as f(s) =
∫∞

0−
e+stf(t)dt,

with the lower bound at t = 0− so that an impulse can be added at t = 0. For

a given transfer matrix a non-unique state-space representation can be found

of the form [78, 79, 80, 81]:

ẋ = Ax +B u, (5.2)

y = C x +D u, (5.3)
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which is a non-unique time-domain representation of the system’s dynamics.

Here the quantity x ∈ L2n×1 (L being the space of linear operators on the

relevant Hilbert space H) is a vector of conjugate operator pairs representing

the internal n degrees of freedom of the system, u ∈ L2m×1 is the vector of m

system inputs, and y ∈ L2m×1 is the vector of m system outputs. Note that

in a quantum mechanical state-space, two conjugate operators are used to

represent each individual degree of freedom of the system hence the factors of

2. In the context of quantum optomechanics, x̂ represents the cavity/oscillator

eigenmodes for the cavities and mechanical oscillators in the system, while û

and ŷ are continuous Bosonic fields in free space [18, 10]. The dynamical

matrix A ∈ C2n×2n describes the internal dynamics of the system, the input

matrix B ∈ C2n×2m describes the coupling of the input into the system, the

output matrix C ∈ C2m×2n describes the coupling of the system to the output,

and the “direct-feed” matrix D ∈ C2m×2m describes the coupling of the input

directly to the output. (A,B,C,D) are together called the system matrices

and fully describe the linear dynamics of the system.

The system is called physically realisable (and a corresponding physical re-

alisation can be designed) if, in the Heisenberg picture evolution of the system,

the commutation relations are preserved [8]:

∀i, j d[xi,xj] = 0, [yi(t),y
†
j(t
′)] = δ(t− t′)δij, (5.4)

where the differential is treated using the quantum Itô rule, meaning that

the cross-products of the differentials of the operators must be calculated [82,

16, 83]. The conditions on the system matrices for all such evolutions to

preserve these commutation relations are found by using Eqs. (5.2) and (5.3)
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to calculate the increment of the system state dxi in Eq. (5.4) for an in-

finitesimal time period dt. For an n degree-of-freedom system described us-

ing complex mode operators (as are usually used in quantum optics) such

that x = (â1, â
†
1; . . . ; ân, â

†
n)T with m inputs and outputs described by u =

(û1, û
†
1; . . . ; ûm, û

†
m)T and similarly for y, the constraints on the system matri-

ces are given by

AJ + JA† +BJmB
† = 0, (5.5)

JC† +BJmD
† = 0, (5.6)

DJmD
† = Jm, (5.7)

where J = diag(1,−1; . . . ; 1,−1) ∈ R2n×2n and Jm = diag(1,−1; . . . ; 1,−1) ∈

R2m×2m1. See Appendix A of [66] for a proof of these constraints. So now we

have a restriction on the possible system matrices that can lead to a physically

realisable system.

Now we consider how to generate such a physically-realisable state-space

model from the system’s transfer matrix. The conventional procedure for

transforming the transfer matrix to a minimal state-space model is outlined

in Refs. [78, 80]. Such a state-space model constructed from a pole-zero form

transfer matrix is minimal if the number of internal degrees of freedom (e.g. the

number of pairs of conjugate ladder operators describing the system state) is

equal to the highest polynomial order in the frequency s among all of the

transfer functions in the transfer matrix. Generally such a procedure will lead

1As discussed in Appendix. C.1, this matrix takes a different form when using Hermitian

observable quadrature operators.
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to system matrices (A′, B′, C ′, D′) that do not satisfy Eqs. (5.5) and (5.6)

and therefore cannot be physically realised. Here we can construct a method

allowing us to transform (A′, B′, C ′, D′) to a physically realisable counterpart

(A,B,C,D), given that the transfer matrix G(s) obeys a condition that will

be given in Eq. (5.13). To achieve we assume that there exists a Hermitian

matrix X which satisfies the following equations,

A′X +X(A′)† +B′Jm(B′)† = 0, (5.8)

X(C ′)† +B′Jm(D′)† = 0. (5.9)

If we can write X = TJmT
†, then this can be substituted into the above

equations to give,

A′TJmT
† + TJmT

†(A′)† +B′Jm(B′)† = 0, (5.10)

TJmT
†(C ′)† +B′Jm(D′)† = 0. (5.11)

This matrix T can be used to transform the state-space via the canonical

state-space transformation,

A = T−1A′T, B = T−1B′, C = C ′T, D = D′. (5.12)

If we then invert these equations and substitute into Eqs. (5.10) and (5.11)

then we recover the physically realisability Eqs. (5.5) and (5.6). Therefore this

matrix T transforms the physically unrealisable state-space (A′, B′, C ′, D′) into

a realisable state-space (A,B,C,D).

The existence of T is guaranteed by the symplectic condition imposed on

any physically realisable transfer matrix G(s) and direct-feed matrix D [9]:

G†(s∗)JmG(−s) = Jm. (5.13)
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Now that we have shown how to obtain the physically realisable state-space

model (A,B,C,D) from the transfer matrix obeying Eq. (5.13) we can infer

the physical realisation. We describe the realisation chiefly using the gener-

alised open oscillator [10] formalism. This is a general formalism describing

open quantum systems with arbitrary internal linear dynamics and input-

output couplings, providing a language for describing and analysing systems

with internal degrees of freedom coupled to external continuum fields, such as

quantum measurement devices and quantum filters. As shown in [8] for an

n degree-of-freedom system, when the direct-feed matrix D is symplectic and

unitary (i.e. it satisfies (5.7) and D†D = DD† = I), there is a one-to-one corre-

spondence between the system matrices (A,B,C,D) and the generalised open

oscillator which is parameterized by a triplet (S, L̂, Ĥ) [10, 70, 71]. Here, the

scattering matrix S ∈ Cm×m describes the transformation of the input fields

through a passive network, i.e. any passive pre-processing of the system’s in-

put fields. The coupling operator L̂ = Kx where K ∈ Cm×2n describes the

coupling between the input and output fields and the internal degrees of free-

dom, e.g. equivalent to the usual input-output Langevin equations [17] when

the input-output fields are coupled to the internal fields by a mirror. The

Hamiltonian Ĥ describes the free evolution of the internal system dynamics

as if the system were closed. The relation between the system matrices and

the generalised open oscillator parameters is given by,

S = [D2k−1,2l−1]k,l=1,2...,m,

L̂ = [ Im 0 ]PmC x, Ĥ = x†
i

4
~
(
JA− A†J

)
x,

(5.14)

where Im is an identity matrix, Pm is the permutation matrix that maps u =
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OPO pump

Physical realisation

Transfer function State space Generalised
open oscillator

Figure 5.2 Flowchart showing the steps in constructing the physical
realisation of a quantum filter; an active filter is used as an illustration.

(û1, û
†
1; . . . ; ûm, û

†
m)T to (û1, û2, . . . , ûm, û

†
1, û
†
2, . . . , û

†
m)T , and Ĥ is derived in

Appendix. C.1. The total Hamiltonian is then given by, [10]

Ĥtot = Ĥ + i~[ L̂† −L̂T ]u, (5.15)

where the input fields u are pre-processed by the static passive network de-

scribed by S. Now we have achieved the full physical Hamiltonian describing

the system starting from the transfer matrix describing the frequency-domain

input-output behaviour.

In the case where only one of the internal degrees of freedom is coupled to

the input-output fields it could be trivial from the Hamiltonian to construct

the physical realisation by inspection, however this is not always the case.

Systems consisting of more than one internal degree-of-freedom can first be

sub-divided into separate one degree-of-freedom systems coupled via direct

interaction Hamiltonians via the main synthesis theorem proved in [10]. These

64



Frequency-domain quantum network synthesis

systems can then be systematically realised by connecting the individual one

degree-of-freedom systems in series, and overlapping them accordingly, giving a

systematic way to construct the physical realisation regardless of complexity 2.

In the below example however this will not be required as the unstable filter

only has one internal degree of freedom.

We will now outline the general approach to constructing the physical re-

alisation given an n degree-of-freedom generalised open oscillator as developed

in [10]:

1. First, the main synthesis theorem is used to split the n degree-of-freedom

oscillator into n one degree-of-freedom oscillators which are connected

in series, i.e. the output of each oscillator is fed into the input of the

next, and also a direct interaction Hamiltonian is produced coupling the

oscillators. The task is then to realise each of these one degree-of-freedom

oscillators and the direct interaction Hamiltonian.

2. For each one degree-of-freedom oscillator we do the following. First the

scattering matrix can be realised as a static passive linear network us-

ing only beamsplitters and mirrors. Then, the general coupling operator

of the form L̂ = αâ + βâ† can be realised by indirectly coupling the

mode â to the external continuum fields û and ŷ via an auxiliary mode

b̂, which has sufficiently fast dynamics with coupling rate γ such that

it can be adiabatically eliminated from the final input-output relation.

This auxiliary mode is coupled to the main mode via non-linear crystal
2Note that the approach is also entirely general to optomechanical systems, provided

that the dynamics can be linearised.
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(two-mode squeezing process) for the βâ† term, and via a beamsplit-

ter for the αâ term. These are related to the physical parameters via

α = −ε∗2/
√
γ where ε2 = 2Θe−iΦ where Θ is the beamsplitter mixing

angle and Φ is the relative phase detuning introduced by the beamsplit-

ter, and β = ε1/
√
γ where ε1 is the effective pump intensity, shown to

be equal to cr/(2L) in the supplemental material, where r is the single-

pass squeezing factor and L is the cavity length. Finally, the Hamil-

tonian Ĥ can be realised in the most general case as a detuned DPA

(degenerate parametric amplifier), which can be implemented as a de-

tuned cavity with a χ(2) non-linear crystal with a pump frequency twice

the laser carrier frequency ω0. Specifically to realise the Hamiltonian

Ĥ = ~∆â†â + ~ i
2
(ε(â†)2 − ε∗â2) we use a cavity with resonant frequency

ωcav = ω0 + ∆ where ω0 is the laser carrier frequency and a non-linear

crystal with effective pump intensity ε = cr/(2L) where again r is the

single-pass squeezing factor and L is the cavity length.

3. To implement the interaction Hamiltonian between each one degree-of-

freedom oscillator we overlap the relevant internal modes of each os-

cillator via a non-linear crystal and/or beamsplitter depending on the

interaction. The interaction Hamiltonian between modes âk and âl can

be written in the form Ĥkl = ~(ε2â
†
kâl + ε∗2âkâ

†
l + ε1â

†
kâ
†
l + ε1âkâl) where

in this case the effective pump intensity is −2iε1, and again ε2 = 2Θe−iΦ

where Θ is the mixing angle and Φ is the relative phase difference be-

tween the two modes. In the unstable filter example below we do not

need to do this as we already only have one internal degree of freedom.
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In summary, from the input-output transfer matrix we have developed the

physical parameters describing the system. The procedure is summarised in

Fig. 5.2.

5.1.2 Illustrative example: an unstable filter

To demonstrate the power of this approach, we will go beyond passive optical

cavities by considering a non-trivial active filter for beating the universal gain-

bandwidth product limit in resonant detection schemes [26, 84, 28, 30, 31, 33,

5, 85, 60, 52, 22, 32, 34, 86, 87], specifically, the so-called unstable filter [5]

which has a broadband anomalous (negative) dispersion. The gain-bandwidth

product, also known as the Mizuno limit [23], states that the integral of the

squared frequency-domain signal transfer function for a resonant detector is

bounded purely by the energy stored in the detector. Therefore, when consid-

ering the quantum shot noise due to the input quantum vacuum, the detec-

tion bandwidth and peak sensitivity are inversely proportional which cannot

be surpassed by changing any physical parameter other than the power in the

detector. One way this can be surpassed is by using the broadband anomalous

dispersion of the aforementioned unstable filter to partially negate the positive

dispersion of the detector’s signal cavity as first discussed in [5]. The filter also

is unusual because it seemingly violates the Kramers-Kronig relations which

imply that a stable anomalous dispersion filter without absorption (i.e. with

unity gain over the range of the anomalous dispersion) violates causality, how-

ever since this system is dynamically unstable this restriction does not ap-

ply [88, 89, 90, 91]. As discussed in the procedure above we start with the
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frequency-domain transfer function of the unstable filter,

G(s) =
s− s0

s+ s0

, (5.16)

where s ≡ iω and s0 = γneg is a characteristic frequency quantifying the anoma-

lous (negative) dispersion. An example will now infer a physical realisation

for this device using the above procedure.

First we note that since the transfer function is first order in frequency

s, only one internal degree of freedom will be required for the minimal state-

space realisation. Therefore the system state vector x̂ will have two elements:

x1 = â,x2 = â† describing a single cavity mode, and similarly for the vectors

u and y describing the input and output modes respectively. As a transfer-

function matrix, Eq. (5.16) can be written as

G(s) =
s− s0

s+ s0

1 0

0 1

 , (5.17)

which can be verified to satisfy the constraint (5.13) and therefore a corre-

sponding physical realisation can be found. To simplify the notation, we de-

fine a dimensionless s (and the corresponding time) which is normalised with

respect to s0/2 = γneg/2 (a factor of 2 for convenience), namely s → (s0/2)s

where s is now dimensionless. A corresponding minimal but not physically

realisable state-space model is given by, ˙̂a

˙̂a†

 =

2 0

0 2


 â
â†

+

 û
û†

 , (5.18)

 ŷ
ŷ†

 =

4 0

0 4


 â
â†

+

 û
û†

 . (5.19)
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The matrix X that solves Eqs. (5.8) and (5.9) is given by X = −J/4, which

can be written in the form X = TJT † with the matrix T which transforms

the above state-space model to the physically realisable one is given by,

T =
1

2

0 −1

1 0

 . (5.20)

The resulting state-space model can be found by applying the similarity trans-

formation as shown in Eq. (5.12),

A =

2 0

0 2

 , B =

 0 2

−2 0

 , C =

0 −2

2 0

 , D = I, (5.21)

which obey Eqs. (5.5) and (5.6) by construction and therefore is s physically

realisable state-space model.

Eq. (5.14) can now be used to calculate the scattering matrix, input-output

coupling, and internal Hamiltonian for the unstable filter. We have

S = I, K =

[
0 −2

]
, Ĥ = 0. (5.22)

This implies that there is no input scattering with S = I, and L̂ = −2â†, and

there is no detuning or internal squeezing of the cavity mode as Ĥ = 0.

Since Ĥ and S are trivial to implement we now implement the coupling

operator L̂ = −2â† as discussed above. In this case we have α = 0, and so

just have the auxiliary mode coupled to the main cavity mode via a non-linear

crystal. This auxiliary mode will later be adiabatically eliminated, however it

makes the physical realisation more feasible as coupling two cavity modes via a

parametric oscillator is more experimentally durable. Therefore we construct
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Figure 5.3 Diagram showing where the filter realisation (highlighted
by the shaded box) would be integrated into a standard Michelson
inteferometer, using a scheme similar to that proposed in Ref. [5],
which improves the signal response at high frequencies via the negative
dispersion compensating the positive dispersion of the arm cavities as
discussed above.

the physical realisation shown in Fig. 5.2, which can be integrated into an

interferometer as shown in Fig. 5.3.

The realisation simply consists of two tuned cavities (the main mode â and

the auxiliary mode b̂) coupled via a χ(2) non-linear crystal, labelled OPO (op-

tical parametric oscillator), pumped by a classical pump field, labelled pump.

One of the cavities is coupled to the external fields. Specifically, we have

Ĥab = −~√s0 γ(â†b̂† + âb̂) , (5.23)

Ĥext = −i~√γ(b̂ ĉ†ext − b̂†ĉext) . (5.24)

The interaction Hamiltonian Ĥab describes the coupling of both cavity modes

â and b̂ via the OPO. As shown in Appendix. C.2, the coupling rate √s0 γ

is equal to rc/(2Lb), where r is the single-pass squeezing factor of the crystal
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and Lb is the length of the auxiliary cavity. As an order of magnitude estimate

for implementation in a laser interferometer with arm length of Larm = 4 km

(where s0 ≡ γneg = c/Larm [5]), the required squeezing factor is

r = 7.7× 10−5

√
Tb

100 ppm

√
Lb

24 cm

√
4 km

Larm
. (5.25)

The Hamiltonian Ĥext describes the coupling between the auxiliary mode b̂

and the external continuum field ĉext, which is related to the input and output

operators via û ≡ ĉext(t = 0−) and ŷ ≡ ĉext(t = 0+) [11, 17]. The coupling rate

γ is defined as Tbc/(4Lb) where Tb is the input mirror transmissivity. The neg-

ative dispersion transfer function shown in Eq. (5.16) can then be recovered by

solving the resulting Heisenberg equations of motion in the frequency domain,

and then applying the approximation γ � ω, the so-called “resolved-sideband

regime”, which effectively adiabatically eliminates b̂ [10].

In Appendix. C.3, we include the effect of optical loss for the realistic

implementation. We found that the noise contribution from the auxiliary

cavity loss is insignificant compared to the contribution from the â cavity loss.

The resulting input-output relation including the optical loss is given by

ŷ(s) ≈ ω + i(γεa + s0)

ω + i(γεa − s0)
û(s) +

2
√
s0 γεa

ω + i(γεa − s0)
n̂†a(s), (5.26)

where γεa = εac/(4La) with εa being the total optical loss in the â cavity and

La being the cavity length, and n̂a is the corresponding vacuum noise process.

The distortion of the transfer function due to γεa is on the order of γεa/s0, while

the noise term is on the order of
√
γεa/s0 and is therefore more significant.

The above input-output relation takes the same form as the optomechani-

cal case [5] if we view n̂a as the thermal noise of the mechanical oscillator. In
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Figure 5.4 Required total â cavity loss εa as a function of ratio of
â cavity length to arm cavity length La/Larm for the cases where the
noise power contribution at ω = 0 due to n̂a is a tenth of that of the
signal power (blue line) and a hundred (orange line).

contrast, in this case the loss na is sourced by the quantum vacuum and so

it only has vacuum fluctuations, equivalent to a mechanical oscillator at envi-

ronmental temperature Tenv = 0. Therefore the strict thermal requirements of

the optomechanical unstable filter are avoided. Instead vacuum fluctuations

are injected due to losses in the mirrors and the non-linear crystal. The re-

quired loss to achieve low noise as a function of â cavity length is shown in

Fig. 5.4. As we can see, given an interferometer arm length of Larm = 4 km, a

loss per unit length of εa/La = 2.5 ppm m−1 is required to achieve a 1/10 noise

contribution, i.e. to have the squared magnitude of the second (loss) term in

Eq. (5.26) be a tenth of the first (dark port vacuum) term, which is already

achievable with state-of-the-art optics [92, 93].
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5.1.3 Discussion

In addition to realising quantum filters with a known transfer function, this ap-

proach can also be used to design the optimal high-precision measurement de-

vices, where the optimality is based upon the quantum Cramér-Rao bound [94,

95, 96, 97, 98, 99]. We can view the entire measurement device as a N degree-

of-freedom quantum filter, and then tune the filter parameters so as to min-

imise the quantum Cramér-Rao bound. Therefore, we can construct the most

sensitive possible N degree-of-freedom measurement device. This opens up a

new paradigm of designing and optimising measurement devices and is worthy

of being further explored. We will explore this in detail in Section. 6.

5.2 Example: Internal Squeezing

Figure 5.5 The setup for the squeezing of one quadrature via internal
squeezing within the cavity. The transformation between the input
and output sidebands obeys the J-J unitary condition in Eq. (6.19),
however interestingly the quadrature operators â1, â2 experience am-
plification and de-amplification. The OPA (optical parametric ampli-
fier) is pumped by the classical pump beam.

In section. 5.1.2 we considered a diagonal transfer matrix with each element

having unity gain. One example of a physical system with a diagonal transfer

matrix that does not have unity gain is a cavity with internal squeezing as
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discussed in Appendix. C.2 and shown in Figure. 5.5, however in this case it

is diagonal in the basis of the quadrature operators,

Gq(iΩ) =

γ+
√
γs0+iΩ

γ−√γs0−iΩ 0

0
γ−√γs0+iΩ

γ+
√
γs0−iΩ

 , (5.27)

which obeys Eq. (6.19) and so can be physically realised. The top-left element

has magnitude greater than unity for s0 6= γ and so this quadrature is ampli-

fied, while the other quadrature is de-amplified by the same amount. Infinite

gain at Ω = 0 is achieved in the amplified quadrature when s0 = γ. Using

Eq. (A.6) we can find the sideband-picture transfer matrix,

G(iΩ) =

− γ2+γs0+Ω2

γs0−(γ−iΩ)2

2γ
√
γs0

−γs0+(γ−iΩ)2

2γ
√
γs0

−γs0+(γ−iΩ)2 − γ2+γs0+Ω2

γs0−(γ−iΩ)2

 , (5.28)

which obviously also obeys Eq. (5.13). To achieve this we use Mathematica to

find an arbitrary unrealisable canonical state-space and then solve Eq. (5.9)

to find the matrix X which we then diagonalise into X = TJT † to find the

transformation T to the physically realisable state-space,

A =

 −γ √
s0γ

√
s0γ −γ

 , B =
√

2γI, C = −
√

2γI, D = I, (5.29)

where I is the 2×2 identity matrix. Note that the dynamical matrix A has one

real positive eigenvalue for s0 > γ and so the system is dynamically unstable

in this regime. The corresponding generalised open oscillator G = (S, L̂, Ĥ) is

calculated using Eq. (5.14), giving,

S = I, K = −
√

2γI, R =
i

2

 0
√
s0γ

√
s0γ 0

 . (5.30)
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The Hamiltonian matrix R is related to the Hamiltonian via Ĥ = x†Rx

where x is the system state vector for the internal degrees of freedom as com-

plex ladder operators. As shown in [10] for a detuned cavity with detuning ∆

and effective (complex) pump intensity ε the Hamiltonian matrix is given by,

R =
1

2

 ∆ iε

−iε∗ ∆

 . (5.31)

In this case sinceK is diagonal there is a beamsplitter coupling between the

auxiliary mode and the internal mode, and R being off-diagonal tells us that

there is a degenerate parametric amplification process within the main cavity

with effective pump intensity ε =
√
s0γ. Comparing this with Eq. (C.12) we

can see that the effective pump intensity is related to the squeezing factor by,

r =
2εL

c
, (5.32)

where L is the length of the cavity.

The corresponding graphical representation produced by Simba (as dis-

cussed in Section. 9.1.1) is shown in Figure. 5.6. Since the auxiliary mode

can be adiabatically eliminated, we are left simply with a tuned cavity with

internal squeezing and hence we recover the setup shown in Figure. 5.5.

From the physical realisation we calculate the quadrature picture transfer

matrix from the inputs to the internal degree of freedom,â1

â2

 =

−
√

2
√
γ

γ−√γs0+iΩ
0

0 −
√

2
√
γ

γ+
√
γs0+iΩ


â1

in

â2
in

 , (5.33)

where â1
in and â2

in are the input amplitude and phase quadratures respectively,

and â1 and â2 are the quadratures for the internal degree of freedom. For
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1

output

input

Figure 5.6 A graph representation of the internal squeezing sys-
tem. The input field is âin, which couples into the auxiliary degree
of freedom which can be adiabatically eliminated as discussed in Sec-
tion. 5.1.2. The diamond arrow denotes a beamsplitter-like coupling
between mode 1 and the auxiliary mode. The main mode 1 has a
square shape which denotes internal squeezing without detuning.

s0 = γ, as mentioned above, we expect an infinite gain and thus the SNR

as defined in Eq. (6.16) should diverge. In this case the quadrature transfer

matrix is given by, â1

â2

 =

 i
√

2
√
γ

Ω
0

0 −
√

2
√
γ

2γ+iΩ


â1

in

â2
in

 . (5.34)

Indeed, we see that the SNR diverges for the amplitude quadrature, while the

SNR for the phase quadrature is π and so is constrained by the Mizuno limit.

We will repeat this analysis starting with a more general transfer function in

Section. 6.2.4.
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5.3 Quantum network synthesis for n degrees of

freedom

Determine transfer 
matrix G(s)

Construct a 
corresponding MIMO 

state-space

Transform to physically-
realisable state-space

Transform to 
(S,L,H)

Apply separation 
theorem

Realise each 
open oscillator

Form the 
network

Figure 5.7 An overview of the steps for forming the physical realisa-
tion, i.e. the quantum network of generalised open oscillators, from a
given transfer matrix.

In this section we will give a brief mostly-qualitative overview of the synthe-

sis of quantum networks given a transfer-function or state-space representation

of the dynamics of the system for systems with n internal degrees of freedom,

summarising the methodology in [10] which we refer to for more specific quan-

titive details eschewed here. An overview of the steps for generally finding the

physical realisation from the transfer matrix is shown in Figure. 5.7.

It is generally possible to find a physical realisation for a given transfer
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matrix G(s) so long as it obeys Eq. (5.13), given some restrictions of the eigen-

values of the state-space matrices as discussed in [9]. Assuming the transfer

matrix is in pole-zero form, the number of internal degrees of freedom of the

system can be seen by the highest order in the Laplace frequency s in any of

the elements Gij(s) of G(s), since this determines the number of states of the

(not necessarily physically realisable) minimal state-space realisation. This

order is unchanged by the similarity transformation mapping to the physically

realisable state-space. Once this transformation is found a physically realisable

state-space (A,B,C,D) can be deduced which can be used to determine the

n degree-of-freedom generalised open oscillator G = (S, L̂, Ĥ) via Eq. (5.14).

This open oscillator formalism is already quite a physically interesting repre-

sentation of the system: it demonstrates all passive pre-processing of the input

via the scattering matrix S, all the input-output coupling equations via L̂, and

the full internal dynamics of the system via Ĥ.

When G represents a system with one degree-of-freedom we can already

immediately write down the physical realisation as described above, however

when it consists of n degrees of freedom it must first be separated into n

individual one degree-of-freedom systems which are appropriately connected.

For simplicity we consider the case where S = I so there is no input scattering

process which makes the following theorem significantly simpler. We also

introduce a notation for the series product of two generalised open oscillators

G1 = (I,K1x1,
1
2
x†1R1x1) and G2 = (I,K2x2,

1
2
x†2R2x2) (where we have let
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Si = I for simplicity),

G2 / G1 =
(
I,K2x2 +K1x1, (5.35)

1

2
x†1R1x1 +

1

2
x†2R2x2 +

1

2i
x†2(K†2K1 −KT

2 K
#
1 )x1

)
,

which represents the feeding of the output of G1 into the input of G2. More

generally we can have a “reducible network” of generalised open oscillators

by also allowing direct interaction Hamiltonians between the open oscillators

which is itself a generalised open oscillator, N = {{Gk}k=1,...,n, Ĥ
d,S} where

Ĥd =
∑

j

∑
k=j+1 x

†
jRjkxk and Rjk ∈ C2×2 are the elements of the Hamiltonian

matrix of each oscillator, and S = {Gk /Gj} is a list of series products between

each oscillator. We can now give a simplified version of Theorem 2 from [10].

Synthesis Theorem (simplified). Let G be an n degree of freedom gener-

alised open oscillator with Hamiltonian matrix R ∈ C2n×2n, coupling matrix

K ∈ Cm×2n, and identity scattering matrix S = Im×m. Then write R as 2× 2

block matrices R = [Rjk]j,k=1,...,n which are each Hermitian, and write K as a

block matrix K = [K1 K2 . . . Kn] for each j = 1, . . . , n where Kj ∈ Cm×2.

Now, for each j = 1, . . . , n let Gj = (I2×2, Kjxj,
1
2
x†jRjjxj) be independent

one degree-of-freedom generalised open oscillators with ladder operators xj =

(âj, â
†
j)
T , coupling operator Kj, and Hamiltonian matrix Rjj. Then define a

direct interaction Hamiltonian,

Ĥd =
n−1∑
j=1

n∑
k=j+1

x†k

(
R†jk −

1

2i
(K†kKj −KT

k K
#
j )

)
xj, (5.36)

then the reducible network N = {{G1, . . . , Gn}, Ĥd, {G2 /G1, G3 /G2, . . . , Gn /

Gn−1}} is equivalent to G.
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Once the system is separated, the individual systems can be realised as de-

scribed in section. 5.1. The interaction Hamiltonian Ĥd can then be realised by

overlapping the internal modes of each system through a beamsplitter and/or

a non-linear crystal. For example, if we have a two degree-of-freedom system

with main modes â and b̂, then the interaction Hamiltonian Ĥd ∝ âb̂† + â†b̂

can be realised by overlapping both the cavity modes using a beamsplitter.

This fuller formalism is used in Section. 6.1.1 and Chapter. 9.
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Chapter Six

Optimal detector design

In Section. 5.1.3 we discussed how it would be possible to use the systematic

realisation framework to design a detector that optimises the signal response.

In general, there are two approaches to this: we can either start with an

existing detector design and ask what kind of device can be inserted that

improves the performance of the detector via coherent feedback, or take a

bottom-up approach and design the entire detector using the framework.

In either case we are interested in optimising the signal-to-noise ratio

(SNR), which is given by,

S =

∫ f2

f1

df
|h(f)|2
Shh(f)

, (6.1)

where h(f) is the Fourier transform of the strain signal h(t) and Shh(f) is the

strain-referred noise spectral density.
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6.1 Coherent feedback design

In this section I give an example of using the framework to design a coherent

feedback filter, specifically a device to broaden the coupled cavity resonance.

6.1.1 Coupled cavity broadener

As discussed previously, current and future ground-based gravitational wave

detectors are limited by quantum shot noise at high frequencies. Currently this

prevents our measurement of the high frequency part of the binary neutron star

inspiral waveform, knowledge of which would allow us to significantly constrain

the neutron star equation of state. One way to improve the high-frequency

sensitivity in a specific region is to use the coupled cavity resonance between

the signal recycling cavity (SRC) and the arm cavities. This is a general feature

of coupled harmonic oscillators with the same resonant frequency, where the

single resonance at ω0 is separated into two symmetric resonances at ω0 ± ωs
due to the coupling between them [37]. When a gravitational wave passes it

modulates the phase of the light in the arm cavities to induce sidebands in the

differential laser mode at ω0±ω, with ω0 being the input laser carrier frequency.

Therefore the detector response to gravitational waves at frequency ω ≈ ωs is

increased. Since the coupled cavity resonances ω0±ωs are symmetric about ω0

along with the induced sidebands ω0±ω double the response can be achieved.

The separation frequency is approximately given by ωs ≈
√
γarm/τSRC where

γarm is the arm cavity bandwidth and τSRC ≡ LSRC/c is the time delay across

the SRC, with LSRC being the length of the SRC and c being the speed of light.
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Unfortunately, the width of the coupled cavity resonance is approximately

given by the SRC bandwidth γSRC, while its peak is proportional to (γSRC)−1/2,

and so there exist a tradeoff. In this chapter we will explore a new approach

allowing us to broaden this coupled cavity resonance without sacrificing its

peak.

Designing the transfer function

To analyse the system a single-sideband field approach was used. This is

sufficient because we are predominantly interested in the behaviour of the

shot noise which dominates at high frequencies, which is determined solely by

the transfer function from the strain to the main interferometer readout. Note

also that we are working in the rotating frame with respect to the laser carrier

frequency ω0 throughout this paper. To broaden the bandwidth a transfer

function with a frequency-dependent phase eiφ(Ω) was placed into the SRC,

and the system solved such as to give a control on the width of the coupled

cavity peak while keeping its peak constant.

For ease of notation we define τ1, γ1 ≡ τSRC, γSRC, and τ2, γ2 ≡ τarm, γarm.

We assume that both cavities are short and so we can expand the time delay

across both cavities to first order, i.e. Ωτ1,Ωτ2 � 1. This is essential as

otherwise the resulting transfer function will be infinite order. We also assume

for simplicity that the cavity bandwidth’s are small compared to the inverse

round-trip travel time γ1τ1, γ2τ2 � 1, however this should be dropped for

a more complete analysis. Finally we assume that the phase we introduce

φ � 1 to obtain a closed-form solution for φ. Altogether this leads to the
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strain transfer function,

Th(Ω) ≈ αγ1τ1ωs(i− φ)√
γ1τ2 (γ1τ2ω − i(φω + τ1(ω2 − ω2

s)))
, (6.2)

where α is the coupling strength of the signal. Note that our last approxima-

tion confines us to short-baseline facilities where the GW sideband frequency

is much less than the free spectral range of the arm cavities.

By setting the phase φ = 0 the transfer function for the coupled cavity is

recovered,

Th(Ω) ≈ αγ1τ1ωsi√
γ1τ2 (γ1τ2Ω− iτ1(Ω2 − ω2

s))
. (6.3)

This has a maximum at Ω = ωs called the “coupled cavity resonance”, the

width of which we wish to broaden by our choice of φ while keeping its peak

constant.

To achieve this we set the denominator of eq. (6.2) to be equal to that

of eq. (6.3) except with the former having a modified bandwidth γ′1 and a

constant scaling factor β. The equation we solve is,

γ1τ1Ω− iτ1(Ω2 − ω2
s) = β(γ′1τ1Ω− i(φΩ + τ1(Ω2 − ω2

s))). (6.4)

The scaling factor β was then chosen to match the two transfer functions at

Ω = ωs, giving β = γ1/γ
′
1.

Solving eq. (6.4) for φ and then substituting for β we obtain a frequency-

dependent phase of,

φ = −τ1(Ω2 − ω2
s)(γ1 − γ′1)

γ1Ω
. (6.5)

The transfer function we want to realise is given by T (Ω) = eiφ, however

this would be infinite order in the frequency Ω. To find a finite pole-zero
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expansion we expand for φ� 1, giving,

T (ω) =
2γ1Ω− iτ1(Ω2 − ω2

s)(γ1 − γ′1)

2γ1Ω + iτ1(Ω2 − ω2
s)(γ1 − γ′1)

. (6.6)

To find the controllable canonical form for the state-space, as in [100], we

normalise the frequency variable by defining a normalised complex frequency

s = iΩ/ωs, giving,

T (s) =
−s2 + 2γ1

τ1(γ1−γ′1)ωs
s− 1

s2 + 2γ1

τ1(γ1−γ′1)ωs
s− 1

, (6.7)

which gives the canonical state-space representation,

˙̂a

˙̂a†

˙̂
b

˙̂
b†


=



0 0 1 0

0 0 0 1

−1 0 2γ1

τ1ωs(γ′1−γ1)
0

0 −1 0 2γ1

τ1ωs(γ′1−γ1)





â

â†

b̂

b̂†



+



0 0

0 0

1 0

0 1


âin
â†in

 , (6.8)

âout
â†out

 =

0 0 4γ1

τ1ωs(γ′1−γ1)
0

0 0 0 4γ1

τ1ωs(γ′1−γ1)




â

â†

b̂

b̂†


−

âin
â†in

 . (6.9)

In this case the system has two internal degrees of freedom â and b̂, one in-

put field âin, and one output field âout. The corresponding physically realisable
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state-space is given by,

˙̂a

˙̂a†

˙̂
b

˙̂
b†


=



0 0 1 0

0 0 0 1

−1 0 2γ1

τ1ωs(γ′1−γ1)
0

0 −1 0 2γ1

τ1ωs(γ′1−γ1)





â

â†

b̂

b̂†



+ 2

√
γ1

τ1ωs(γ′1 − γ1)



0 0

0 0

0 1

1 0


âin
â†in

 , (6.10)

âout
â†out

 = 2

√
γ1

τ1ωs(γ′1 − γ1)

0 0 0 1

0 0 1 0




â

â†

b̂

b̂†


−

âin
â†in

 . (6.11)

A graphical representation of the above system was found using Simba and

can be seen in Figure. 6.1 with an example optical layout given in Figure. 6.2, it

too consisting of a coupled cavity, although coupled to the external continuum

fields via a non-linear interaction. To match the desired transfer function, the

separation frequency ωs = c
2

√
T
LL1

, where T is the power transmissivity of the

mirror coupling the two cavities, and L, L1 are the lengths of the two cavities,

must match the separation frequency of the device we wish to broaden (in

the case of broadening the coupled cavity resonance of an interferometer as

discussed above we have ωs =
√
γarm/τSRC).

86



Optimal detector design

1

2

output

input

Figure 6.1 A schematic diagram of a physical realisation for the
transfer function in Eq. (6.6). An optical layout is shown in Fig-
ure. 6.2. In this case we have two internal degrees of freedom labelled
1 and 2 which are coupled via a beamsplitter-like interaction, with
mode 2 being coupled to the external continuum via an auxiliary
mode, which it is coupled to via a non-linear crystal interaction. In
the optical layout we label 1 as â1, 2 as â2. For general details of the
graph representation see Section. 9.1.1.

87



Optimal detector design

Figure 6.2 A schematic optical realisation of the coupled cavity
broadener inferred from Figure. 6.1 after adiabatically eliminating the
auxiliary mode. The device in the â2 cavity is the non-linear crystal.
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6.2 Bottom-up approach

This section contains content from the third paper listed at the beginning of

this thesis which is currently in preparation.

6.2.1 Introduction

The sensitivity of high-precision measurements is constrained by the quantum

Cramer-Rao Bound (QCRB) which states that the variance of the measured

signal due to noise is inversely proportional the variance σNN of the photon

number of the probe degree of freedom coupled to the signal [94, 101, 95,

102, 99, 103]. This quantity is ultimately limited by the Heisenberg limit

σNN = N2, which states that the uncertainty scales with the number of re-

sources available (in this case photons), although for most resonant detectors

it is often constrained by the stronger shot noise limit σNN = N [104]. This

shot noise limit can be surpassed using techniques such as frequency-dependent

squeezing [4] and bandwidth broadening via negative dispersion [30, 31, 5, 22],

however the Heisenberg limit is not saturated in those cases. Previously the

Heisenberg limit for phase measurement has been saturated in a non-resonant

detector using a combination of entanglement, multiple sampling, and prob-

abilistic adaptive measurements [105]. Theoretical examples of systems that

saturate the limit have also been derived for exotic non-classical states [106,

107] and using quantum error correction [108]. Here we instead focus on lin-

ear optical phase measurement and an alternative approach to saturating the

Heisenberg limit. In this section we introduce a general approach to realising
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a Heisenberg limited detector directly from its input-output transfer matrix.

We will use internal squeezing to directly increase the photon number fluctua-

tion in the probe degree of freedom [109, 110] using the systematic realisation

framework developed in [56]. We will consider both the most general first

order detector and the most general second order detector.

The outline of this section is as follows. In Section. 6.2.2 we will show how

quantum network synthesis can be used to find a physical realisation directly

from the transfer matrix, and how the resulting detector’s performance can

be evaluated using the Quantum Cramér-Rao bound. In Section. 6.2.3 we will

then discuss the various conditions on the transfer matrix arising from the

physical realisability conditions, which greatly reduce the number of param-

eters needed to describe a physically realisable system. As an example of a

system which saturates the Heisenberg limit via squeezing, in Section. 6.2.4

we consider a realisation of a system exhibiting input-output squeezing and

show how the SNR diverges at the threshold.

6.2.2 Quantum Cramér-Rao Bound

For simplicity we consider only single-input single-output (SISO) quantum

systems with the input and output fields each described by a pair of bosonic

annihilation and creation operators. Specifically, we work in the quadrature

formalism described by Caves and Schumaker [111, 112]. As discussed in [99],

the Quantum Cramér-Rao Bound (QCRB) sets a fundamental lower limit on

the variance of an unbiased estimator of a classical signal x(t) coupled to a
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detector linearly via Ĥint = −F̂ x(t),

σQCRB
xx (Ω) =

~2

4SFF (Ω)
, (6.12)

where SFF (Ω) is the symmetrised power spectral density describing the quan-

tum fluctuations of F̂ . Ignoring losses the spectral density of F̂ is given by,

SFF (Ω) = Suu(Ω)|GuF (Ω)|2 = |GuF (Ω)|2, (6.13)

whereGuF (Ω) is the open-loop transfer function from the input quadrature û to

the internal degree-of-freedom F̂ . Further we have used that the measurement

shot noise spectrum at the input has a white-noise spectrum Suu(Ω) = 1.

Therefore by maximising the transfer function from the input to the probe

degree of freedom we reduce the QCRB.

For simplicity we illustrate the general process with an optical GW in-

terferometer where the probe fluctuation is related to the intracavity photon

number fluctuation by,

SFF (Ω) =
~2ω2

0

2L2
arm

SNN(Ω), (6.14)

where SNN(Ω) is the power spectral density of the photon number fluctuations,

ω0 is the laser carrier frequency, and Larm is the arm cavity length. In this case

we measure the strain and therefore we should maximise the strain signal-to-

noise ratio (SNR),

S =

∫ ∞
−∞

dΩ

Shh(Ω)
, (6.15)

where Shh(Ω) is the strain signal spectral density and we have assumed that

the frequency domain strain signal obeys |h(Ω)|2 = 1. This SNR is bound by

91



Optimal detector design

the QCRB,

S ≤
∫ ∞
−∞

dΩ

SQCRB
hh (Ω)

=
ω2

0

2
σNN (6.16)

where SQCRB
hh (Ω) = σQCRB

xx (Ω)/L2
arm, and σNN is total variance of the photon

number of the probe degree of freedom. Therefore as shown in Eq. (6.13)

maximising the transfer of the input field to F̂ maximises the photon number

variance which in turn minimises the QCRB and maximises the SNR. For

passive resonant detectors the photon number fluctuation is limited by the

aforementioned shot noise limit σNN = N where N is the average photon

number, giving S = ω2
0N

2/2 = E2/(2~2) where E is the average energy. This

is known as the Mizuno limit [23]. The most important insight here is that the

ultimate sensitivity limit of such detectors is limited purely by the detector’s

energy and is always independent of any other physical parameter such as the

bandwidth or optical topology. As we shall see in Section. 7.1 the tuned cavity

is Mizuno limited. In the following sections we will see that we can engineer

an infinite photon number fluctuation σNN →∞ so that the Heisenberg limit

σNN ∝ N2 is saturated.

As discussed in [56], we can synthesise any n degree-of-freedom system

directly from its input-output transfer matrix, so long as it obeys certain

conditions which we will discuss in Section. 6.2.3. Labelling each internal

degree-of-freedom of the realisation as F̂i, i = 1, . . . , n we can then calculate

the open-loop transfer functions from the input to those degrees of freedom,

GuFi
(Ω). We can then maximise the right-hand-side of Eq. (6.16) by maximis-

ing GuFi
(Ω) for the optimal system parameters and also choosing the optimal

internal degree-of-freedom F̂i to couple the signal x(t) to, giving us a sys-
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tematic way of optimising the detector design given the input-output transfer

matrix.

6.2.3 Constraints on input-output relations of linear de-

tectors

In this section we will consider the constraints on the general input-output

transfer matrix given by,ŷ1(Ω)

ŷ2(Ω)

 =

G11(Ω) 0

0 G22(Ω)


û1(Ω)

û2(Ω)

 , (6.17)

where ŷ and û are the output and input fields respectively in the two-photon

quadrature formalism [111, 112]. We choose the off-diagonal rotation terms

to be zero without loss of generality. One special case is where |G11(Ω)|2 =

|G22(Ω)|2 = 1 in which case we have no squeezing as in Section. 7.1. To

parameterise the transfer function we consider an n degree-of-freedom pole-

zero form,

G11(s) =

∏n
j=1(s− zj)∏n
k=1(s− pk)

, (6.18)

where {zj ∈ C | j = 1, . . . , n}, {pk ∈ C | k = 1, . . . , n} are the zeroes and poles

respectively, and n is equal to the number of internal modes of the quantum

system. As shown in [9] the transfer matrix is physically realisable if,

G†q(s
∗)ΘGq(−s) = Θ, (6.19)

where s = iΩ and,

Θ =

 0 i

−i 0

 . (6.20)
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This condition restricts the conjugate transfer function to,

G22(s) =

∏n
k=1(−s− p∗k)∏n
j=1(−s− z∗j )

, (6.21)

and so the poles/zeroes of G22 are the conjugates of the zeroes/poles of G11 re-

spectively and the sign of the frequency is flipped. Since the real and imaginary

parts of the poles and zeroes are independent we have in total 4n independent

parameters specifying our system.

The possible poles and zeroes can be further reduced by noting that the

quadrature operators are real and so the transfer matrix must obey Gq(−s) =

G†q(s
∗), which leads to the equation,

n∏
j,k=1

(−s− pk)(s− z∗j ) =
n∏

j,k=1

(s− p∗k)(−s− zj), (6.22)

which can be expanded as,

2n∑
j=1

ajs
j−1 = 0, (6.23)

where aj are algebraic combinations of the poles and zeroes. Therefore we have

aj = 0, j = 1, . . . , 2n and therefore the number of independent parameters is

reduced to 2n.

6.2.4 General first-order system

In this section we realise a general first-order input-output transfer matrix

exhibiting squeezing, i.e. |G(Ω)| 6= 1 for the sideband operators. Using internal

squeezing to enhance the quantum-limited sensitivity was previously developed
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Figure 6.3 The setup for the squeezing of one quadrature via internal
squeezing within the cavity, achieving an SNR that diverges at DC.
The OPA (optical parametric amplifier) is pumped by the classical
pump beam.

in [109, 110]. Specifically we consider the quadrature picture transfer matrix,

Gq(iΩ) =

α+iΩ
β−iΩ 0

0 β+iΩ
α−iΩ

 , (6.24)

which obeys Eq. (6.19) and is the most general first order transfer matrix. As-

suming that α > β so that the amplitude quadrature is amplified the physically

realisable state-space is given by,

A =
1

2

−α− β α− β

α− β −α− β

 , (6.25)

B =
√
α + β I2×2,

C = −
√
α + β I2×2, D = I2×2,

where I2×2 is the 2× 2 identity matrix. The physical quantum system has one

internal degree of freedom and its generalised open oscillator [10] is given by,

S = I2×2 (6.26)

L̂ =
√

2α+â (6.27)

Ĥ = − i
2
~α−(ââ− â†â†), (6.28)
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where α± ≡ (α± β)/2, and â is the annihilation operator of the cavity mode.

Here S is the input-output direct scattering matrix, L̂ is the coupling operator

to the external continuum, and finally Ĥ is the system’s internal Hamiltonian

in the rotating frame at the laser carrier frequency. As shown in [56] this

corresponds to a tuned cavity with coupling coefficient γ ≡ α+ and with a non-

linear crystal with coupling frequency χ ≡ α−, which is related to the single-

pass squeezing factor by r = 2χL/c where L is the cavity length. Inverting

these relations gives α = γ + χ and β = γ − χ.

The quadrature picture transfer matrix from the inputs to the internal

degree of freedom is given by,â1

â2

 =


√

2γ
γ−χ−iΩ 0

0
√

2γ
γ+χ−iΩ


â1

in

â2
in

 . (6.29)

In this case the probe degree of freedom is F̂ = â1 and the input field is û ≡ â1
in

giving the input-to-probe transfer function,

GuF (Ω) =

√
2γ

γ − χ− iΩ , (6.30)

the magnitude of which (and thus the probe fluctuation SFF ) diverges when

the cavity damping rate is equal to the non-linear crystal coupling frequency

γ = χ which corresponds to the threshold case where the cavity acts as an

optical parametric oscillator.

6.2.5 General second-order system

In this section we realise a general second-order input-output transfer matrix,

showing that the optimal sensitivity is achieved when the parameters match
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SRC Arm cavity

Figure 6.4 The setup analysed for the quantum expander as explored
in [110], equivalent to a tuned Michelson interferometer except with
squeezing (via a non-linear crystal) internally within the SRC (signal
recycling cavity).

that of the so-called quantum expander first explored in [110], a setup which,

similarly to the transmission-readout setup discussed in [22], can directly in-

crease the detection bandwidth of a gravitational-wave interferometer. This

setup, shown in Figure. 6.4, consists of a tuned, signal-recycled Michelson in-

terferometer with internal squeezing in the signal recycling cavity. The signal-

recycled Michelson can be mapped to an equivalent coupled-cavity [21]. We

show that the quantum expander is the optimal detector for any second-order

quadrature-picture transfer matrix obeying the above constraints.

We start with the most general second-order input-output transfer matrix,

Gq(iΩ) =

 (iΩ−α1)(iΩ−β1)
(iΩ−α2)(iΩ−β2)

0

0 (−iΩ−α2)(−iΩ−β2)
(−iΩ−α1)(−iΩ−β1)

 , (6.31)

where α1, α2, β1, β2 ∈ R. Requiring that there is no gain at DC we also obtain

the condition α1β1 = α2β2. We then follow the procedure given in [56] to find

the physical realisation directly from this transfer matrix,

1. a minimal non-realisable canonical state-space is first found,

2. a transformation to the physically realisable state-space is then found,
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3. the physical realisation corresponding to this state-space is found by cal-

culating the two degree-of-freedom generalised open oscillator and sepa-

rating into two one degree-of-freedom generalised open oscillators using

the synthesis theorem in [10].

The corresponding physically realisable state-space is given by,

A =



0 0 −iωs 0

0 0 0 iωs

−iωs 0 −γ −χ

0 iωs −χ −γ


,

B =



0 0

0 0
√

2
√
γ 0

0
√

2
√
γ


, (6.32)

C =

0 0 −
√

2
√
γ 0

0 0 0 −
√

2
√
γ

 , D = I2×2,

where γ ≡ 1
2
(−α1 + α2 − β1 + β2), χ ≡ 1

2
(α1 + α2β1 + β2), and ωs ≡

√
α1β1.

This corresponds to the dynamics derived from Hamiltonian for the quantum

expander first described in [110]. The corresponding quantum network is given

byN = {{G1, G2}, Ĥd,S} where S = G2/G1 represents the series product [68],

i.e. the output of G1 is fed into G2. The two generalised open oscillators are

given by,

G1 = (I2×2, 0, 0) , (6.33)

G2 =
(
I2×2,−

√
2γâq,

i
2
~χ(âqâq + â†qâ

†
q)
)
, (6.34)
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where I2×2 is the 2 × 2 identity matrix, γ is the coupling frequency of the

continuum to the cavity mode described by annihilation operator âq, and χ

is the strength of the non-linear interaction. The Hamiltonian coupling the

two cavities is given by Ĥd = ~ωs(âqâ† + â†qâ) where â is the cavity mode of

the second cavity, and is therefore a simple beamsplitter-like coupling between

the two cavities. Note that G1 is not coupled to the external continuum and

therefore it is only coupled to G2 via Hd. In total we have two tuned cavities

coupled by a beamsplitter-like interaction, with the first cavity coupled to the

external continuum and exhibiting internal squeezing, and have thus recovered

the quantum expander realisation pictured in Fig. 6.4.

The quadrature transfer matrix from the input to the arm cavity mode â

was found to be,

â1

â2

 =

 0
√

2γωs

iω(χ−γ)+ω2
s−ω2

−
√

2γωs

−iω(γ+χ)+ω2
s−ω2 0


â1

in

â2
in

 . (6.35)

Using Eq. (6.16) we see that the SNR for signal coupled to the amplitude

quadrature is given by 2πγ/|γ − χ|, which diverges as χ → γ. At χ �

γ the SNR approaches zero since the non-linear interaction totally depletes

the amplitude quadrature fluctuations in the cavity. The SNR for the phase

quadrature is given by 2πγ/(γ + χ) which is maximal at χ = 0 where it is

equal to 2π and is thus constrained by the Mizuno limit.

For the signal recycling cavity mode âq, we also see the divergence at χ→ γ,

except that in this case the SNR for the phase quadrature diverges rather than
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the amplitude quadrature,â1
q

â2
q

 =

− i
√

2
√
γω

−iω(γ+χ)+ω2
s−ω2 0

0 − i
√

2
√
γω

iω(χ−γ)+ω2
s−ω2


â1

in

â2
in

 . (6.36)

In this case the SNR for the amplitude quadrature is given by 2πγ/(γ+χ) and

for the phase quadrature is given by 2πγ/|γ−χ| i.e. the role of the amplitude

and phase quadrature are swapped compared to the arm cavity mode.
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Chapter Seven

Saturating the Heisenberg Limit

via Hidden Modes

This chapter contains content from the third paper listed at the beginning of

this thesis which is currently in preparation.

In this chapter we show how a tuned cavity can be augmented with aux-

iliary modes that do not affect the input-output dynamics, leading to infinite

signal amplification and thus also saturating the Heisenberg limit [113]. In

section. 7.2 we further show that an ideal QND (quantum non-demolition)

measurement can be formed [42] by adding the auxiliary modes, and further

that decoherence-free subspace [114, 115] is realised, allowing the auxiliary

mode pair to be modified with arbitrary dynamics which are then realisable

using the aforementioned framework. In section. 7.3 we also discuss the case

where we begin with a two degree-of-freedom transfer function. Finally in

section. 7.4 we discuss the general conditions for modifying a system’s internal

dynamics without affecting its input-output transfer matrix.
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7.1 Signal Amplification via Hidden Modes

Figure 7.1 A schematic representation of the final input output re-
lation developed in Section. 7.1. The modes b̂ and ĉ are coupled to
the mode â via a squeezing-like interaction and beamsplitter-like in-
teraction respectively with the same coupling frequency g, with the
signal h being coupled to mode ĉ. In this setup the signal response
diverges at DC. We then add two additional modes d̂ and ê coupled to
the modes b̂ and ĉ respectively, both via beamsplitter-like couplings
with coupling frequency ω′ which shifts the signal response resonance
to Ω = ω′.

In this section we show a tuned cavity can be augmented with a pair

of unobservable “hidden” modes that act to amplify the signal and saturate

the Heisenberg limit without modifying the input-output dynamics. We will

first show that the minimal realization of a tuned cavity is constrained by

the aforementioned Mizuno limit, however recently it has been shown that an

infinite DC signal response can be achieved by adding a pair of modes that

do not manifest in the input-output dynamics [113]. We will show how this is

the simplest case of a general class of such non-minimal realisations, and that

a degenerate free subspace is formed allowing for arbitrary modification of the
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system dynamics.

First, the sideband-picture tuned cavity transfer matrix is given by, âout(Ω)

â†out(−Ω)

 =

Ω−iγ
Ω+iγ

0

0 Ω−iγ
Ω+iγ


 âin(Ω)

â†in(−Ω)

 . (7.1)

The physical realisation of this is a single mode coupled to the external con-

tinuum with dynamics determined by the Langevin equation and associated

input-output relation, [19, 40, 17, 41]

˙̂a = −γâ+
√

2γâin (7.2)

âout = âin −
√

2γâ, (7.3)

where γ is the bandwidth of the cavity mode. The corresponding generalised

open oscillator is given by,

S = I2×2, L̂ = −
√

2γâ, Ĥ = 0. (7.4)

If we choose to couple the signal to the âmode then the input-to-probe transfer

function is given by,

GuF (Ω) =

√
2γ

γ − iΩ . (7.5)

Integrating this over all frequencies gives 2π and thus the total SNR will be

bounded by a constant independent of the bandwidth, which is the aforemen-

tioned Mizuno limit.

We now consider adding two auxiliary modes b̂ and ĉ as shown in Fig. 7.1

and discussed in [113],

Ĥ0 = −~g(âĉ† + â†ĉ)− ~g(âb̂+ â†b̂†). (7.6)
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We show in Appendix. 7.4 how this Hamiltonian can be inferred from a more

general class of dynamics by requiring that the input-output relation remain

unchanged by the auxiliary modes. Such a system is known as PT-symmetric

(parity-time symmetric) as the Hamiltonian is left invariant under the parity

operation (when the modes ĉ and b̂ are interchanged) and the time reversal

operation (ĉ↔ ĉ†, b̂↔ b̂†) [116]. The equations of motion are given by,

˙̂a = −γâ+ igĉ+ igb̂† +
√

2γâin, (7.7)

˙̂
b† = −igâ, (7.8)

˙̂c = igâ. (7.9)

In this case we consider ĉ to be the probe degree of freedom. Solving in the

frequency domain we can find the input-to-probe transfer function,

GuF (Ω) = − g
Ω

√
2γ

γ − iΩ , (7.10)

and therefore the probe fluctuation SFF diverges at DC.

We can also explicitly introduce a classical signal h(t) coupling to the am-

plitude quadrature of mode ĉ (as for a cavity whose length is being modulated

by a classical signal [17]) via,

Ĥsig = −~αX̂ch(t), (7.11)

where we have defined the amplitude quadrature as X̂c = (ĉ+ ĉ†)/
√

2, and the

dynamics for mode ĉ are now given by,

˙̂c = igâ+ iαh. (7.12)
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Solving for the readout mode â in terms of the signal leads to a divergent

signal response at DC,

â(Ω) =
gα

Ω2
h(Ω) + . . . , (7.13)

and therefore the SNR S diverges.

7.2 Connection to QND measurement

It is interesting to consider why the signal response diverges at DC in this

regime. We shall see here that it occurs due to this being an ideal QND

(quantum non-demolition) measurement [42], in which case the probe degree

of freedom has infinite fluctuation as it is conjugate to a conserved QND

quantity. By re-writing Eq. (7.6) as,

Ĥ0 = −~g[â†(ĉ+ b̂†) + â(ĉ† + b̂)], (7.14)

we can see that the composite quantity ĉ+ b̂† is conserved (since [ĉ+ b̂†, ĉ†+ b̂] =

0). This further implies two conserved quantities X̂+ ≡ (X̂c + X̂b)/
√

2, Ŷ− ≡

(Ŷc − Ŷb)/
√

2 in terms of amplitude and phase quadratures X̂c ≡ (ĉ+ ĉ†)/
√

2,

Ŷc ≡ (ĉ − ĉ†)/
√

2i (and similarly for â and b̂). Rewriting the Hamiltonian in

terms of these gives,

Ĥ0 = ~g(ŶaX̂+ − X̂bŶ−)− ~(α/
√

2)(X̂+ + X̂−)h, (7.15)

where X̂− ≡ (X̂c − X̂b)/
√

2. The relevant residue part that can lead to detec-

tion of the signal h is given by,

Ĥres = −~gX̂bŶ− − ~(α/
√

2)X̂−h, (7.16)
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with Ŷ− being the conserved QND observable and X̂− being the probe degree-

of-freedom thus having infinite variance and therefore giving infinite signal

response. In the frequency-domain Ŷ− exhibits the divergence at DC,

Ŷ−(Ω) =
iα√
2Ω

h(Ω). (7.17)

As discovered above, the operators X̂+ and Ŷ− are constants of motion

and therefore act on a so-called decoherence-free subspace [114, 115], which

is essentially decoupled from the external continuum. The dynamics can be

arbitrarily modified while keeping this subspace decoherence-free so long as

the simultaneous measurability condition is kept,

[X̂+(t), X̂+(t′)] = [Ŷ−(t), Ŷ−(t′)] = 0. (7.18)

We can then use the realisation framework discussed above to realise modi-

fications of the dynamics such that the Heisenberg limit is saturated over a

range of frequencies. As an example we can shift the divergent response from

DC to another frequency ω′ by adding an extra pair of modes d̂ and ê which

couple to b̂ and ĉ respectively, in which case the interaction Hamiltonian gains

the following terms,

−~ω′(b̂d̂† + b̂†d̂+ ĉ†ê+ ĉê†)

=i~ω′(X̂+Q̂+ + Ŷ+P̂+ − Ŷ−P̂− + X̂−Q̂−),

which satisfies Eq. (7.51) equal to zero and thus does not affect the input-

output dynamics, and where we have defined,

Q̂± ≡
X̂d ± X̂e√

2
, P̂± ≡

Ŷd ± Ŷe√
2

. (7.19)
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The residue part relevant to signal detection gains the term,

~ω′(X̂−Q̂− − Ŷ−P̂−). (7.20)

The latter term modifies the dynamics of Ŷ− to become,

˙̂
Y− = −ω′Q̂− +

α√
2
h, (7.21)

˙̂
Q− = ω′Ŷ−, (7.22)

and so eliminating Q̂− in the frequency domain we obtain,

Ŷ−(Ω) =
iαΩ√

2(Ω2 − ω′2)
h(Ω). (7.23)

We see that the signal response now diverges at Ω = ω′ rather than at DC, and

that the PT symmetric case shown in Eq. (7.17) is recovered for for ω′ = 0.

The final phase quadrature input-output relation is given by,

Ŷout(Ω) = −Ω− iγ
Ω + iγ

Ŷin(Ω) +

√
γαgΩh(Ω)

(Ω2 − ω′2)(Ω + iγ)
. (7.24)

So we have a system with no squeezing (in this case a first-order tuned cavity

input output relation), while still saturating the Heisenberg limit by means of

infinite signal amplification.

7.3 Signal amplification example: two degrees

of freedom

Now we consider the transfer function for the transmission-readout setup first

discussed in [22], which in the case where the damping rate of the mechanically
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Figure 7.2 Realisation of an active coupled cavity, consisting of two
cavity modes coupled by a non-linear crystal. A diagrammatic repre-
sentation is shown in Figure. 9.1.

suspended oscillator γm is much less than any other frequency is given by, âout(Ω)

â†out(−Ω)

 =
Ω2 − iΩγf + g2 − ω2

s

Ω2 + iΩγf + g2 − ω2
s

 âin(Ω)

â†in(−Ω)

 , (7.25)

where Ω is the GW (gravitational wave) sideband frequency relative to the

laser carrier ω0, γf is the damping rate of the SRC (signal recycling cavity), g

is the coupling rate of the mechanically suspended oscillator in the SRC, and

ωs is the sloshing frequency between the SRC and the arm cavity. This system

surpasses the Mizuno limit, i.e. S > π, for g > ωs, and for g = ωs has S =∞

since the signal response diverges at DC.

Note that the above transfer matrix is second order while the transmission-

readout setup has three modes (the SRC mode â, the arm cavity mode Â,

and the mechanically suspended mirror mode b̂), so one of those modes is

now hidden. If we apply our framework to find the realisation of the above

transfer function we get an active coupled cavity as shown diagrammatically in

Figure. 7.2 which does not result in surpassing the Mizuno limit for either mode

(i.e. S = π). Therefore in this case the minimal realisation is not sufficient, and
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we have to consider how a hidden mode can be added to regain the sensitivity

improvement. One way to realise the system would be to consider the full

4 × 4 MIMO transfer matrix with a thermal heat bath b̂th coupled to the

mechanically suspended mirror with γm 6= 0, however it is not easy to find the

minimal state-space realisation in this case. To make progress we start with

the interaction Hamiltonian for the transmission-readout setup,

Ĥ0 =− ~ωs(âÂ† + â†Â)− ~g(âb̂+ â†b̂†)

− ~α(Â+ Â†)h, (7.26)

where h is the classical signal. This leads to the equations of motion,

˙̂a+ γf â = igb̂† − iωsÂ+
√

2γf âin, (7.27)

˙̂
b† = igâ, (7.28)

˙̂
A = −iωsâ+ iαh, (7.29)

where âin is the input vacuum. Then by calculating the frequency domain

equations and substituting into the equation for â the equation for the SRC

mode is obtained,

(−iΩ + γf )â =
ig2

Ω
â− iω2

s

Ω
â+ . . . , (7.30)

where the term with g2 arises from the b̂ mode, and the term with ω2
s arises

from the Â mode and . . . contains the contribution from the input mode âin

as well as the signal h which is not important here. Note that even though

there are two modes they contribute the same frequency dependence to the

system, and indeed we can add as many more modes as desired to the system
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without increasing the order of the input-output transfer function. The reason

for this is two-fold: first, both modes are degenerate (they both have zero

eigenfrequency in our reference frame at the carrier frequency ω0); second,

they are not coupled to each other. The takeaway is that we can couple an

arbitrary number of such modes to the system that are “hidden” from the

input-output dynamics and that if the signal it coupled to one of these modes

S > π can be achieved. If we add another mode coupled to â with the

same eigenfrequency and coupling frequency then g2 it can be easily shown

that the strain transfer function and SNR S is unchanged if we make the

replacement g →
√
g2 − g2

2, therefore adding more modes does not add any

further improvement and instead effectively shifts the coupling frequency of

the mechanical resonator.

Now we consider the case where g = ωs in which case Eq. (7.25) be-

comes a first-order tuned cavity. Clearly in this case it will not be possible

to pass the Mizuno limit with the minimal realisation, however we know that

the transmission-readout signal response diverges at DC for this parameter

regime. Again looking at Eq. (7.30) we see that if g exactly equals ωs then the

contribution from the two modes cancels and the system becomes first-order.

Therefore we can also add pairs of exactly cancelling modes without increas-

ing the order of the input-output transfer function. Such modes cancel in the

case where the coupling frequencies are equal, the modes’ eigenfrequencies are

equal (as in the above case), and one of the modes has a beamsplitter-like

coupling to the mode â and the other has a non-linear crystal like coupling.
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7.4 Auxiliary Mode Dynamics.

In this section we will discuss how the dynamics of added auxiliary modes,

shown in Fig. 7.1, can be inferred by requiring that the frequency-domain

input-output relation remain unchanged by the addition of them. Each aux-

iliary mode is coupled to a set of nd internal modes d̂j and ne internal modes

êj adding the following terms to the Hamiltonian,

∑
j

− ~gdj(b̂d̂
†
j + b̂†d̂j)− ~gd†j (b̂d̂j + b̂†d̂†j)

− ~gej(ĉê
†
j + ĉ†êj)− ~ge†j (ĉêj + ĉ†ê†j)

+
∑
i 6=j

~gdid†j (d̂id̂
†
j + d̂†i d̂j) + ~gdidj(d̂id̂j + d̂†i d̂

†
j)

+
∑
i 6=j

~geie†j (êiê
†
j + ê†i êj) + ~geiej(êiêj + ê†i ê

†
j),

where gdid†j and gdidj respectively quantify the beamsplitter-like and non-linear

coupling between modes d̂i and d̂j, and similarly for the ê modes. Note that

there is no direct coupling between the d̂ and ê modes.
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The full set of equations of motion are,

˙̂a =− γâ+
√

2γâin

− igbb̂+ igb† b̂
† − igcĉ+ igc† ĉ

†, (7.31)

˙̂
b = igbâ− igb† â† + i

∑
j

gdj d̂j − i
∑
j

gd†j
d̂†j, (7.32)

˙̂
dj = igdj b̂+ igd†j

b̂† − i
∑
i 6=j

gdid†j
d̂i − i

∑
i 6=j

gdidj d̂
†
i , (7.33)

˙̂c = igcâ− igc† â† + i
∑
j

gej êj − i
∑
j

ge†j
ê†j, (7.34)

˙̂ej = igej ĉ+ ige†j
ĉ† − i

∑
i 6=j

geie†j
êi − i

∑
i 6=j

geiej ê
†
i . (7.35)

Focussing on d̂j, the frequency-domain expression is given by,

− iΩ~d(Ω) = ~gdb̂(Ω) + ~gd† b̂
†(−Ω)− iG(d)~d(Ω), (7.36)

where,

~gd = (igd1 ,−ig∗d†1 , . . . , igdnd
,−ig∗

d†nd

)T , (7.37)

~gd† = (igd†j
,−ig∗dj , . . . , igd†nd

,−ig∗dnd
)T , (7.38)

and where,

~d(Ω) = (d̂1(Ω), . . . , d̂nd
(Ω); d̂†1(−Ω), . . . , d̂†nd

(−Ω))T . (7.39)

and where in block form,

G(d) =


G

(d)
1

...

G
(d)
nd

 ∈ C2nd×2nd , (7.40)
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where,

G
(d)
j =

gd1d
†
j
. . . gdnd

d†j
; gd1dj . . . gdnd

dj

g∗
d1d
†
j

. . . g∗
dnd

d†j
; g∗d1dj

. . . g∗dnd
dj

 , (7.41)

with gdjdj = gdjd†j
= 0. Solving for ~d(Ω) gives,

~d(Ω) = (−iΩI2nd×2nd
+ iG(d))−1

[
~gd ~gd†

] b̂(Ω)

b̂†(−Ω)


≡M (d)

 b̂(Ω)

b̂†(−Ω)

 ,
where I2nd×2nd

is the 2nd × 2nd identity matrix, and M (d) ∈ C2nd×2.

The frequency domain expression for b̂ is given by,

− iΩ

 b̂(Ω)

b̂†(−Ω)

 =

 igb −igb†
ig∗
b† −ig∗b


 â(Ω)

â†(−Ω)

+ iD(d)~d(Ω), (7.42)

where,

D(d) =

gd1 , . . . , gdnd
; −gd†1 , . . . , −gd†nd

g∗
d†1
, . . . , g∗

d†nd

; −g∗d1
, . . . , −g∗dnd

 . (7.43)

Solving for the b̂ mode we get, b̂(Ω)

b̂†(−Ω)

 = T (b)(Ω)

 â(Ω)

â†(−Ω)

 , (7.44)

where,

T (b)(Ω) ≡ (−iΩI2×2 − iD(d)M (d))−1

 igb −igb†
ig∗
b† −ig∗b

 , (7.45)

and where I2×2 is the 2× 2 identity matrix.
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Similarly we have,

 ĉ(Ω)

ĉ†(−Ω)

 = T (c)(Ω)

 â(Ω)

â†(−Ω)

 ,
where,

T (c)(Ω) ≡ (−iΩI2×2 − iD(e)M (e))−1

 igc −igc†
ig∗
c† −ig∗c

 (7.46)

where,

D(e) =

ge1 , . . . , gene
; −ge†1 , . . . , −ge†ne

g∗
e†1
, . . . , g∗

e†ne

; −g∗e1 , . . . , −g∗ene

 , (7.47)

and where,

M (e) = (−iΩI2ne×2ne + iG(e))−1, (7.48)

where in block form,

G(e) =


G

(e)
1

...

G
(e)
ne

 ∈ C2ne×2ne , (7.49)

where,

G
(e)
j =

ge1e†j . . . genee
†
j
; ge1ej . . . geneej

g∗
e1e
†
j

. . . g∗
enee

†
j

; g∗e1ej . . . g∗eneej

 . (7.50)
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The frequency domain expression for â is given by,

−iΩ

 â(Ω)

â†(−Ω)

 =

 igb −igb†
ig∗
b† −ig∗b


 b̂(Ω)

b̂†(−Ω)


+

 igc −igc†
ig∗
c† −ig∗c


 ĉ(Ω)

ĉ†(−Ω)

+ . . . ,

= T (a)(Ω)

 â(Ω)

â†(−Ω)

+ . . .

where . . . are the damping and input vacuum terms from Eq. (7.2) and where,

T (a)(Ω) ≡

 igb −igb†
ig∗
b† −ig∗b

T (b)(Ω)

+

 igc −igc†
ig∗
c† −ig∗c

T (c)(Ω) = 0. (7.51)

Therefore to keep the input-output dynamics invariant, all elements of this

matrix must be zero.

We can now use the above to recover the Hamiltonian with two auxiliary

degrees of freedom given in Eq. (7.6), starting with the general linear Hamil-

tonian,

− ~gb(âb̂† + â†b̂)− ~gb†(âb̂+ â†b̂†)

− ~gc(âĉ† + â†ĉ)− ~gc†(âĉ+ â†ĉ†).

The terms with coupling rates gb and gc are coupled to â via a beamsplit-

ter, and the terms with coupling rates gb† and gc† via a non-linear crystal (or
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equivalently an optomechanical interaction with optomechanical coupling fre-

quency g, as discussed in [22, 113]). Each auxiliary mode has just one degree

of freedom, and so we have nd = ne = 0, and thus,

T (b) =
1

−iΩ

 igb −igb†
ig∗
b† −ig∗b

 , (7.52)

T (c) =
1

−iΩ

 igc −igc†
ig∗
c† −ig∗c

 . (7.53)

This gives,

T (a)(Ω) ≡ 1

−iΩ(−g2
b + g2

b† − g2
c + g2

c†)I2×2. (7.54)

If we now choose cavity mode ĉ to be coupled to mode â purely by a beamsplitter-

like interaction, as for the arm cavity of an interferometer, then we have gc = ωs

with ωs being the sloshing frequency between the mode ĉ and mode â and no

non-linear coupling: gc† = 0. Therefore the input-output dynamics are left

invariant if gb = 0 and gb† = ωs, and so mode b̂ should be coupled to mode â

via a non-linear interaction (e.g. a non-linear crystal if b̂ is an optical mode)

with the same coupling constant as the ĉ mode: g ≡ gb† = ωs. Therefore we

have recovered the expected Hamiltonian.
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Chapter Eight

All-optical PT Symmetric

Amplifier

This section contains content from the fourth paper listed at the beginning of

this thesis which is currently in preparation. Here I present the PT-symmetric

quantum amplifier, a stable configuration which exhibits infinite signal re-

sponse at DC. I infer an all-optical realisation of the previous optomechanical

design and propose a preliminary implementation example in a LIGO-like de-

tector as well as a tabletop experiment design.

8.1 Introduction

Recently the breakthrough theoretical discovery was made that a PT (parity-

time) symmetric system can lead to an infinite signal response at DC and thus a

diverging quantum-limited sensitivity while remaining marginally stable [113].

Such a setup consists of a readout mode, coupled to an arm cavity probe

field via a beamsplitter, and coupled to a mechanically suspended mirror via
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radiation pressure with a pump beam. As we will see this is identical to the

non-symmetric setup first discussed in [22] except with the two coupling rates

exactly equal. However, due to the optomechanical nature of the setup it is

very susceptible to thermal noise, and in those works extreme parameters were

chosen for the mechanically suspended mirror to minimise the effect. For this

setup the additional noise power spectral density added by the mechanical

oscillator is given by,

Sn̂n̂(Ω) =
Tenv
Qm

4kBcTa
~LaTbΩ2

, (8.1)

where Qm is the quality factor of the mechanical oscillator, Ta is the trans-

missivity of the input mirror to the signal cavity, Tb is the transmissivity of

the readout port mirror, and La is the length of the signal cavity. We use the

parameters given for the LIGO implementation in Table. 8.1, and examine the

higher frequencies of interest around Ω = 2π × 1 kHz. For the thermal noise

contribution to be less than the shot noise contribution we then require,

Tenv
Qm

. 2× 10−9 K, (8.2)

which gets even stricter as the frequency of interest decreases.

This strict requirement has lead to significant research and development

efforts, such as ultra-high Q mechanical resonators [51] and also using an

optical spring to dampen the thermal noise [43, 60]. Motivated by a previous

all-optical realisation of an unstable filter [56], in this paper we demonstrate

how a non-linear crystal can be used to implement the same interaction as

present in the optomechanical setup, resulting in a realisation which does not

suffer from intense degradation due to thermal noise.
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In [117] it was shown that in the simplest case an infinite DC signal response

can be realised without affecting the input-output dynamics of the system

given that two modes are coupled to the readout mode with equal coupling

constants, with one of the modes (e.g. the arm cavity mode) being coupled

via a beamsplitter-like interaction, and the other mode being coupled by a

non-linear interaction. In the optomechanical case explored in [22, 113] it

was shown that given the rotating wave approximation, the radiation pressure

interaction between the readout mode b̂ and the idler mode ĉ (in this case a

mechanically suspended mirror), as well as the coupling between the readout

and the probe mode â which the signal is coupled to, is described by the

following interaction Hamiltonian:

Ĥint = −~G(ĉb̂+ ĉ†b̂†)− ~g(â†b̂+ âb̂†), (8.3)

where G is the optomechanical coupling rate and g is the sloshing rate between

the arm cavity and readout mode. The PT symmetric condition is given by

G = g where the system becomes symmetric under parity transformation

â ↔ ĉ and time reversal â ↔ â†, ĉ ↔ ĉ† [116]. Effectively the loss and gain

processes are perfectly matched. A schematic of the general system is shown

in Fig. 8.1. As shown in [56] this same interaction can be realised using a

non-linear crystal. This immediately points us to an all-optical realisation of

the PT-symmetric amplifier, which as discussed above does not suffer from the

issue of thermal noise. Instead we will see that the main difficulty becomes

the optical loss requirement in the idler mode.

In this paper we will discuss two designs. First in Section. 8.2 we will

give the theoretical background of the setup. Then in Section. 8.3 we will
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discuss a possible implementation into a LIGO-like interferometer. Finally in

Section. 8.4 we will propose a table-top experiment demonstrating this effect.

In both cases we use the frequency regime inspired by [118] of quantum up-

conversion of the 810 nm idler field to the 1550 nm probe field via a 532 nm

pump field.

Readout

Idler Probe

Figure 8.1 Schematic of a general PT-symmetric amplifier, consisting
of three modes: an idler, readout, and probe, with a signal h coupled
to the probe mode. The idler and readout are coupled via a non-linear
interaction with coupling strength G, while the probe and readout are
coupled via a beamsplitter-like interaction with coupling strength g.
The system is PT-symmetric when G = g. The readout mode is
coupled to the external input and output continuum fields û and ŷ.

8.2 Theoretical overview

As discussed above, the form of the interaction in Eq. (8.3) is identical between

the optomechanical case and the all-optical realisation. Therefore we can use

the same formalism as discussed in previous optomechanical realisations [22,

113], which we will briefly outline here. Specifically, we work in the single-

mode approximation Ω� FSRarm where Ω is the sideband frequency relative
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to the laser carrier ω0 and FSRarm is the free spectral range of the arm cavity,

allowing us to represent each cavity by a single annihilation operator. Overall

we have three modes describing our setup, the arm cavity mode â, the signal

recycling cavity (SRC) readout mode b̂, and the mechanically suspended mirror

mode ĉ. As shown in [56] the two-mode squeezing Hamiltonian in Eq. (8.3) can

be realised with a non-linear crystal by replacing the mechanically suspended

mirror mode ĉ with an optical idler mode, and that this is identical to the

two-mode squeezing interaction with a non-linear crystal with,

G = rc/(2Lb), (8.4)

where Lb is the length of the signal recycling cavity and r is the single-pass

squeezing factor [56]. The sloshing frequency between the arm cavity and

readout mode is given by g ≈
√
cγa/Lb where c is the speed of light, γa

is the half-bandwidth of the â mode, and Lb is the length of the readout

mode cavity [37, 38]. The readout mode b̂ is coupled to the continuous input

û and output ŷ modes via the Langevin equation with damping rate γb =

Tbc/(4Lb) where Tb is the transmissivity of the mirror coupling to the external

continuum [18, 17]. In the absence of radiation-pressure and losses, and letting

the real signal h(t) be coupled to the phase of mode â, the full equations of

motion are given by,

ŷ = û−
√

2γbb̂, (8.5)

˙̂
b+ γbb̂ = iGĉ† + igâ+

√
2γbû, (8.6)

˙̂c = iGb̂†, (8.7)

˙̂a = igb̂+ iω0āh, (8.8)
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where ā ≡ [2PaLa/(~ω0c)]
1/2 is the mean photon number in the â mode, and

where Pa is the circulating power in the â mode, La is the length of the cavity,

and ω0 is the main laser carrier frequency. The dynamical matrix, using state

vector ~x = (â, b̂, ĉ†)T , can be written as,

A =


0 ig 0

ig −γb iG

0 −iG 0

 , (8.9)

with the following eigenvalues,

λ = 0,
1

2

(
−γb ±

√
4(G2 − g2) + γ2

b

)
. (8.10)

For G > g as used in [22] we thus have one positive real eigenvalue and thus

the system is unstable, however in the PT symmetric regime G = g the system

is marginally stable [53, 113]. This simple stability analysis in the single-mode

approximation regime will be extended to higher frequencies in future work.

The frequency-domain input-output relation is given by,

ŷ =
g2 −G2 + iγbΩ− Ω2

g2 −G2 − iγbΩ− Ω2
û

+

√
2γbgω0ā

g2 −G2 − Ω(Ω + iγb)
h. (8.11)

We can see that the input-output transfer function has unity gain as expected,

and the strain transfer function diverges at DC in the PT symmetric regime

G = g. In this regime the system exhibits an exceptional point where the total

SNR scales with time faster than the relative measurement error, and thus an

infinite SNR can be achieved [119].
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The optical loss terms can be easily added by adding the following terms

to the equations of motions for the cavity modes,

˙̂a = −γεaâ+
√

2γεa + . . . , (8.12)

˙̂
b = −γεb b̂+

√
2γεb + . . . , (8.13)

˙̂c = −γεc ĉ+
√

2γεc + . . . , (8.14)

where γa = εac/(4La) where εa is the total loss in the â mode cavity and

similarly for b̂ and ĉ.

8.3 LIGO implementation

In this section we will consider the LIGO implementation of such an all-optical

PT symmetric amplifier as shown in Fig. 8.2, with the sensitivity improvement

over the standard tuned case shown in Fig. 8.3. The parameters used are shown

in Table. 8.1. In this case the modes â, b̂, ĉ are the arm cavity, signal recycling

cavity, and idler mode respectively. A set of different mirror dichroic and

trichroic coatings are used. The steering mirrors for the pump beam are fully

reflective for the 532 nm pump, while fully transparent for the 810 nm idler and

1550 nm probe beams. The SRM (signal-recycling mirror) is partially reflective

for the probe while fully reflective for the idler. Finally the ITM (input test

mass) is partially reflective for the probe while being fully transmissive for the

idler, so as to increase the effective length of the idler mode cavity and thus

dilute its optical loss.

Losses in the signal recycling cavity do not break the PT symmetry and

therefore do not greatly affect the sensitivity improvement. This is shown in
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Fig. 8.4: even at losses as high as 5000 ppm there is little degradation of the

effect. The arm cavity and idler cavity losses do break the PT symmetry, as

they introduce loss into each mode which is not perfectly matched by gain in

the other mode, and therefore as seen in Fig. 8.3 the low-frequency sensitivity

boost is greatly impacted by the idler and arm losses.

Parameter Value

Arm length La 4 km

SRC length Lb 56 m

Test mass M 40 kg

ITM trans. Ta 0.02

SRM trans. Tb 0.01

Arm power Pa 270 kW

Sloshing freq. g/(2π) 7.129 kHz

Table 8.1 Parameters used in the LIGO implementation.

8.4 Experimental design

In this section we will propose a tabletop experimental design, shown in

Fig. 8.5, demonstrating improved signal response via PT symmetry. In this

case, the mirror labelled IM is partially transmissive to the probe, fully trans-

missive to the pump, and fully reflective to the idler. The mirror opposite that

to the left is fully transmissive to the pump and fully reflective to the pump

and probe. The mirror CM is partially reflective to the probe while being fully
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nonlinear
crystal

532 nm

810 nm

1550nm

SRM

ITM

ETM

Figure 8.2 The all-optical PT-symmetric amplifier implementation
in a LIGO-like interferometer

transmissive to the idler (again to dilute the effect of the idler loss).
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Figure 8.3 Comparison between the sensitivity between the PT sym-
metric amplifier and tuned case, as well as the impact of loss in
the idler and arm cavity fields. The introduction of loss to these
modes breaks the PT symmetry, reducing the low-frequency sensitiv-
ity boost. Note that the impact of the idler and arm cavity losses are
equivalent.
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Figure 8.4 Impact of optical loss in the signal recycling mode on the
sensitivity. In this case the PT symmetry is not broken and thus the
low-frequency sensitivity boost is not greatly impacted, even up to
losses of 5000 ppm.

Parameter Value

Top cavity length L 50 cm

Bottom cavity length Lf 10 cm

IM trans. TIM 0.01

CM trans. TCM 100 ppm

Sloshing freq. g/(2π) 1.067 MHz

Crystal pump power Pc 3 W

Crystal parameters. . . . . .

Table 8.2 Parameters used in the tabletop experimental implemen-
tation.

127



All-optical PT Symmetric Amplifier

signal

nonlinear
crystal

pump

idler
CM

EM

Figure 8.5 Experimental design for an all-optical PT-symmetric am-
plifier.
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Figure 8.6 Impact of idler loss on the probe response.
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Chapter Nine

SImBA

In this section we will discuss a set of Python and Mathematica scripts that

automate the discovery of a physical realisation directly from a given set of

transfer functions. The scripts are posted publicly on Github (https://github.

com/joebentley/simba) and in-depth documentation of all features is hosted

on Read the Docs (https://simbapy.readthedocs.io/en/latest/).

9.1 Capabilities and core functions

Here we will discuss the core functionality of the software. Some parts are

only available in the Mathematica package, while most parts are entirely in

Python using the Sympy symbolic manipulation package. Mathematica was

used mainly for convenience as a lot of functions such as finding the minimal

realisation of MIMO state spaces for given transfer matrices are built-in. The

following is a list of core capabilities with M meaning only in Mathematica, P

meaning only in Python, and MP meaning available in both,

• The conversion of SISO transfer function to a state-space representation
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(MP)

• The conversion of MIMO transfer matrices to a state-space representa-

tion (M—built-in to Mathematica)

• Checking whether a MIMO transfer matrix obeys the symplectic condi-

tion given in Eq. (5.13) and is thus physically realisable (MP)

• Finding the physically realisable state-space from a given state-space

(MP)

• Checking whether a state-space is physically realisable (MP)

• Converting a state-space to the generalised open oscillator formalism as

in Eq. (5.14) (P)

• Separating the n degree-of-freedom generalised open oscillator into n 1

degree-of-freedom generalised open oscillators as discussed in section. 5.3

(P)

• Calculating all open-loop and closed-loop transfer functions between de-

grees of freedoms of the system (P)

• Generating a graph layout representing the different couplings between

modes of the system as discussed in section. 9.1.1 (P)

Some features that are not yet implemented that should be in the future

are,

• Non-identity direct-feed matrices D 6= I

• Graphical representation for MIMO systems
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9.1.1 Graph representation and legend

1

2

output

input

Figure 9.1 The generated graph for an active coupled cavity transfer
function. It simply consists of two cavity modes that are coupled via
a non-linear interaction, with an auxiliary mode coupling to one of
the cavity modes via a beamsplitter interaction.

It is possible to generate a graph representation for any physically realisable

SISO system, an example of which are shown in Figs. 9.3 and 9.1. In fact the

function transfer_function_to_graph can be used to generate the graph

directly from the transfer function. The graph representation is a useful way to

visualise the physical connections in the system and what kind of interactions

these consist of. It gives a physical intuition for what kind of configuration

of quantum elements will be needed to realise any given system, especially

in cases where the resulting system might be particularly complicated. Note
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however that it gives no information on any of the coefficients of terms of the

system (apart from whether or not they are non-zero).

Each internal mode is numbered as n, while auxiliary modes associated

with each internal mode are drawn as filled dots. The shape of the main mode

is determined by the R matrix for that degree of freedom as given by Eq. (5.31)

which we repeat here for reference,

R =
1

2

 ∆ iε

−iε∗ ∆

 , (9.1)

where ∆ is the detuning and ε is the effective non-linear crystal pump intensity,

which determine the shape of each mode as shown in Figure. 9.2.

The filled black arrows each represent a series connection (Gi / Gj) from

open oscillator j to i as described in Section. 5.3. Each auxiliary mode is

connected in series in this way. Auxiliary modes that are not coupled to their

corresponding main modes (i.e. the coupling matrix K = 0) are adiabatically

eliminated and so we do not draw them. For example, in Fig. 9.3 the associated

auxiliary mode is not coupled to 2, and so we do not draw it, as it does

not affect the dynamics of the system. The couplings between two different

modes, for example â and b̂ are represented by unfilled double-ended arrows.

Beamsplitter-like interactions with interaction Hamiltonians of the form Ĥ =

âb̂† + â†b̂ are displayed as diamonds; non-linear/squeezing-like interactions

of the form Ĥ = âb̂ + â†b̂† are represented by boxes as shown in Fig. 9.1;

interactions which have a mixture of both are marked using a box on one side

of the arrow, and a diamond on the other side.
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1

1

1

1

Figure 9.2 The correspondence between different shapes of the inter-
nal mode and the type of cavity mode as determined by the internal
Hamiltonian show in Eq. (9.1). The laser carrier frequency is ω0. From
top-to-bottom, a circle represents a tuned cavity (∆ = 0, ε = 0), an
ellipse represents a detuned cavity (∆ 6= 0, ε = 0), a square repre-
sents a degenerate parametric amplifier (∆ = 0, ε 6= 0), and a triangle
represents a detuned degenerate parametric amplifier (∆ 6= 0, ε 6= 0).

9.2 In-depth overview

We will now summarise the most important functions and classes that comprise

the software.

9.2.1 Mathematica

The Mathematica package is located in the Github repository at notebook-

s/Simba.wl and comprises of four main functions,
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1

2

3

output

input

Figure 9.3 The generated graph for the third-order transfer function
s3+s2+s−1
−s3+s2−s−1

. In this case all of the interactions are beamsplitter-like.
The auxiliary mode for mode 2 is not coupled to mode 2 and so is not
drawn as it is adiabatically eliminated.

• JMatrix takes a positive integer n and returns the 2n× 2n J-matrix as

in Eq. (5.13),

• SymplecticJ computes the left-hand side of Eq. (5.13),

• FindXMatrix finds the matrix X that solves the physical realisability
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conditions in Eqs. (5.8) and (5.9),

• FindTMatrix finds the matrix T given X such that X = TJT †.

The benefit of using Mathematica is that it already includes a rich set of

built-in functionality around the symbolic manipulation of state spaces which

is not available in Python. For example given a transfer matrixG(s) in Mathe-

matica bound to a variable tfmatrix, a minimal MIMO state-space realisation

can be found simply via MinimalStateSpaceModel[StateSpaceModel[

TransferFunctionModel[tfmatrix,s]]]. Similarly ObservableModelQ and

ControllableModelQ can be used to determine if the system is observable and

controllable respectively. It also includes functionality for designing stabilis-

ing control systems via pole placement and other methods. However, since it

is not open-source software and is quite expensive for non-academic users, a

majority of the functionality was written in Python so as to be accessible to a

wider audience.

9.2.2 Python

As mentioned above, as much of the software as possible was written using

Python using only open-source packages to be more accessible. In this sec-

tion we will summarise the main classes and methods of the software. The

software comprises of two main modules: simba.core contains classes and

functions associated with computing state-spaces, separating generalised open

oscillators, and calculating transfer functions, while simba.graph generates

graphical representations of quantum networks.
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Most systems will start as an instance of simba.core.StateSpace. Either

the (A,B,C,D) matrices can be passed to the constructor after being cal-

culated in Mathematica, or if the transfer matrix is SISO the classmethods

can be used to construct an instance directly. If a SISO transfer matrix is

used, the system can be extended to quantum afterwards by using the ex-

tended_to_quantum method, which simply takes the Hermitian conjugate of

the matrices and stacks them up in doubled-up notation [66]. The method re-

order_to_paired_form reorders the state, input, and output vectors from the

doubled-up ordering (â1, . . . , ân; â†1, . . . , â
†
n)T to the paired ladder-operator or-

dering (â1, â
†
1; . . . ; ân, â

†
n)T . The method to_physically_realisable is used

to transform to a physically realisable state-space. The property is_phys-

ically_realisable is used to check whether or not the state-space is cur-

rently physically realisable. Finally, the method to_slh returns an instance of

simba.core.SLH which represents the system as a generalised open oscillator

as given in Eqs. (5.14) and described in detail in Section. 5.3.

The SLH class has one important method split which separates the n

degree-of-freedom generalised open oscillator into n one degree-of-freedom gen-

eralised open oscillators and a direct interaction Hamiltonian as described in

Section. 5.3. The split network is represented by an instance of

simba.core.SplitNetwork.

The simba.core.SplitNetwork class has a number of useful methods for

calculating the dynamics of the system. First the method interaction_-

hamiltonian calculates the interaction Hamiltonian between all the internal

modes âi of the system, including the auxiliary modes â′i introduced to alter
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the coupling to the external continuum modes as described previously, but

not including the Hamiltonian for coupling to the external continuum itself1.

The method dynamical_matrix computes the full frequency-domain dynam-

ical matrix (SplitNetwork.DynamicalMatrix) for the system including the

Langevin and input-output terms. The transfer matrix can then be calculated

and used to calculate all the open and closed loop transfer functions between

the internal modes and input and output modes of the system.

The main class for handling graph-based representations of quantum net-

works is simba.graph.Nodes, which can be generated from a SplitNetwork

instance using the simba.graph.nodes_from_network function. The graph

can be converted to an instance of pygraphviz.AGraph from the pygraphviz

module which can then be rendered and saved.

9.3 Next steps

SImBA is a novel and useful piece of software in itself, however some difficul-

ties in the development have showed that an alternative approach could be

taken. I decided at an early point that it would be better to work in a fully

symbolic way, since this is often more useful for theoreticians designing new

detectors and quantum noise reduction approaches. However, this makes the

calculation much more complicated in general, especially given the difficulties

of letting Sympy know whether given combinations of parameters are posi-

tive or negative, and generally long computation times. The next step in the
1That is, we do not compute the Hamiltonian shown in Eq. (5.24), but instead just

compute the Langevin equations directly for each external continuum field.
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development for SImBA will then be facilitating a fully numerical approach,

which is potentially more useful for experimentalists who already have given

numerical parameters in mind.
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Chapter Ten

Conclusion

In this thesis I have presented a set of new techniques for the design of opti-

mal detectors for high-precision measurements. Starting with an exploration

of the quantum noise that currently limits precise linear measurements, and

how the Mizuno limit sets a limit on the sensitivity-bandwidth product of all

passive resonant detectors, I then proposed a new optical layout known as

the transmission-readout setup which incorporates a non-linear interaction to

broaden the bandwidth of the detector without sacrificing the peak sensitivity.

Since devices that incorporate negative dispersion such as the unstable filter

and transmission-readout setup are unstable in their bandwidth broadening

regimes I then briefly discussed how local control can be applied to stabilise

the system without sacrificing sensitivity.

Using a mathematical formalism developed by the quantum control com-

munity, I then applied quantum network synthesis to find an all-optical reali-

sation of the unstable filter as opposed to the optomechanical design originally

proposed, as well as recovering the internal squeezing setup. This inspired the

most important discovery of the thesis: the use of quantum network synthe-
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sis to design optimal detectors by maximising the signal-to-noise ratio (SNR).

Two approaches were considered, the design of coherent feedback devices for

already existing detectors, of which a device which broadens the bandwidth

of a coupled-cavity resonance without sacrificing the peak sensitivity is de-

duced, and a “bottom-up” approach of designing the entire detector using the

framework. In the latter approach I considered three systems in increasing

complexity. First I revisited the one degree-of-freedom system with internal

squeezing, showing that the maximal SNR can be recovered at the threshold

s0 = γ from a general transfer function. Then, I looked at a general second-

order transfer matrix and recovered a system known as the quantum expander,

recovering the results discussed in [110]. Finally, I considered how the entire

transmission-readout setup could be inferred from the full transfer-matrix.

Given recent developments by the group in Caltech and using the above

all-optical realisation of an optomechanical interaction, I also proposed an all-

optical realisation of the PT-symmetric quantum amplifier, both in a LIGO

implementation and as a table-top experimental proposal.

Finally I presented my software Simba which allows the user to automate

the process of finding the realisation from the transfer matrix. I invented a new

graphical format for representing the types of interactions between complex

quantum systems which is generic to different realisation methods (optical,

atomic, optomechanical, etc. . . ).

There are some interesting future avenues that need to be explored. For

example, the application of local sensing to cancelling the thermal noise and

its integration in future designs, and the application of the new techniques
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outlined to producing detectors for new physics such as axion detection and

quantum gravity experiments, as well as general high-precision measurements.

Finally we can consider extending our single mode approach to multi mode

detectors which use their resonance across multiple FSRs, leading to the pos-

sibility of detecting very broadband signals.
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Appendix A

Transforming Between Sideband

and Quadrature pictures

In this section we will derive the transformation between the single-photon

sideband operators and the two-photon quadratures. In the sideband picture

the general input-output relation can be written in the form,

b̂(Ω) = T+(Ω)â(Ω) + T−(Ω)â†(−Ω) +G(Ω)h(Ω), (A.1)

where Ω is the sideband frequency relative to some reference frequency ω0.

The definition of the amplitude and phase quadratures for the input and

output fields about ω0 are given by,

b̂1(Ω) =
b̂(Ω) + b̂†(−Ω)√

2
, b̂2(Ω) =

b̂(Ω)− b̂†(−Ω)

i
√

2
,

a1(Ω) =
a(Ω) + a†(−Ω)√

2
, a2(Ω) =

a(Ω)− a†(−Ω)

i
√

2
.

Note we have written aω0±Ω as a(±Ω) and the same for b.

From these equations we see that we can write,b1(Ω)

b2(Ω)

 =
1√
2

 1 1

−i i


 b(Ω)

b†(−Ω)

 = U

 b(Ω)

b†(−Ω)

 , (A.2)
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and the same for a, where U is unitary (UU† = U†U = I).

Note that h(t) ∈ R =⇒ h(Ω) = h†(−Ω), so we can write the matrix

equation,  b(Ω)

b†(−Ω)

 = Ms(Ω)

 a(Ω)

a†(−Ω)

+ ~Ds(Ω)h(Ω), (A.3)

where,

Ms(Ω) =

 T+(Ω) T−(Ω)

T ∗+(−Ω) T ∗−(−Ω)

 , (A.4)

and

~Ds(Ω) =

 G(Ω)

G∗(−Ω)

 . (A.5)

Therefore by using eq. (A.2) we can write,b1(Ω)

b2(Ω)

 = U

 b(Ω)

b†(−Ω)

 = UMs(Ω)

 a(Ω)

a†(−Ω)

+ U ~Ds(Ω)h(Ω)

= UMs(Ω)U†

a1(Ω)

a2(Ω)

+ U ~Ds(Ω)h(Ω).

So we can identify,

Mq(Ω) = UMs(Ω)U†, (A.6)

~Dq(Ω) = U ~Ds(Ω). (A.7)
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Spectral density of Thermal Heat

Bath Fluctuations

In this section we will derive the spectral density of the fluctuations of a heat

bath. The result also applies to the thermal state of the optical field, which

can be approximated as a vacuum when ~ω0 � kBT where ω0 is the carrier

frequency and T is the environmental temperature.

A heat bath can be modelled as a mixed state,

{|n〉, Pn} (B.1)

whose statistics are determined by the Bose-Einstein distribution,

〈nω〉 =
1

e
~ω

kBT − 1
=

1

e
~(ω0+Ω)

kBT − 1
≈ 1

e
~ω0
kBT − 1

. (B.2)

where ω = ω0 + Ω and assuming Ω � ω0. T is the temperature of the heat

bath and kB is Boltzmann’s constant.

We define annihilation operators for mode n and define continuous opera-

tors as in [18],

bjth → bthω = bth(Ω) =

√
2π

dΩ
bjth. (B.3)
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Therefore,

〈nω〉 = 〈b† jth bjth〉 =
dΩ

2π
〈b†th(Ω)bth(Ω)〉

=⇒ 〈b†th(Ω)bth(Ω)〉 =
2π

dΩ

1

e
~ω0
kBT − 1

,

and since dΩ ≈ 1/δ(Ω− Ω) we can infer,

〈b†th(Ω)bth(Ω′)〉 = 2πδ(Ω− Ω′)
1

e
~ω0
kBT − 1

. (B.4)

Next using the commutation relation for bth(Ω) and eq. (3.24) we can infer,

Sbthbth = 1 +
2

e
~ω0
kBT − 1

. (B.5)

For a laser at room temperature ~ω0 � kBT and so,

Sbthbth ≈ 1. (B.6)

For a mechanical oscillator we write ω0 as ωm, the oscillator eigenfrequency,

and we generally have ~ωm � kBT and so,

Sbthbth ≈
2kBT

~ωm
+ 1. (B.7)
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Supplementary material for

section. 5.1

C.1 Hamiltonian matrix in complex operator no-

tation

In this section the expression for the internal Hamiltonian Ĥ shown in Eq. (5.14)

will be transformed from the real-quadrature form in Ref. [8] to the complex

ladder operator form.

The Hamiltonian in the real-quadrature form is given by

Ĥ = x†rΩrxr , (C.1)

where xr = (q̂1, p̂1; . . . ; q̂n, p̂n)T are the real quadrature operators. The relation

between Ωr and the dynamical matrix Ar in the state-space model is given

uniquely by,

Ωr =
1

4

(
−ΘAr + A†rΘ

)
, (C.2)

where,

Θ = diag(Θ1, . . . ,Θ1︸ ︷︷ ︸
n times

) ∈ R2n×2n, (C.3)
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and,

Θ1 =

 0 1

−1 0

 . (C.4)

The complex ladder operators are related to the real quadrature operators

by x = (â1, â
†
1; . . . ; ân, â

†
n)T = Uxr, where,

U = diag(U1, . . . , U1︸ ︷︷ ︸
n times

) ∈ C2n×2n, (C.5)

where,

U1 =
1√
2

1 i

1 −i

 , (C.6)

is the unitary transformation that converts from the real quadrature operators

(q̂, p̂) to the complex ladder operators (â, â†).

Note that we can write Θ = −iU †JU , and that the relation between the

dynamical matrix in the real quadrature picture and the complex ladder oper-

ators is given by A = U †ArU , and recall that U is unitary. Substituting these

facts into the expression for Ĥ we get Ĥ = x†Ωx where,

Ω =
i

4

(
JA− A†J

)
. (C.7)

Where J is defined in the main text.

C.2 Relating the coupling rate to the single-pass

squeezing factor

To compare the coupling rate √s0γ to the single-pass amplification factor r,

we look at the degenerate case of the interaction Hamiltonian given in Eq. (20)
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of the main text,

Ĥdeg = −~
√
s0γ/2[(â†)2 + â2]. (C.8)

Solving the equation of motion in the frequency domain, the resulting input-

output relation for the amplitude quadrature â1 in the two-photon formal-

ism [111, 112] is

âout
1 (ω) =

γ +
√
s0γ + iω

γ −√s0γ − iω
âin

1 (ω) . (C.9)

We can derive the same input-output relation by propagating the contin-

uum field through the cavity with a nonlinear crystal, and obtain

âout
1 (ω) =

−
√
R + e2re2iωL/c

1−
√
Re2re2iωL/c

âin
1 (ω) . (C.10)

Assuming T ≡ 1 − R, r, ωL/c � 1, we can make the Taylor expansion of the

above equation to the leading order of these small dimensionless quantities:

âout
1 (ω) ≈ T/2 + 2r + 2iωL/c

T/2− 2r − 2iωL/c
âin

1 (ω) . (C.11)

Eq. (C.9) and Eq. (C.11) become identical when

γ ≡ Tc

4L
, r = 2

√
s0γ

L

c
, (C.12)

which is the mapping used in the main text.

C.3 Including losses into the analysis

In this section, we show how the effect of optical loss is included in the analysis

for the realistic implementation. The optical losses in the mirrors of both

cavities will introduce quantum white noise vacuum processes [19, 57, 10],
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n̂a, n̂b, which are coupled to modes â and b̂ respectively via transmissivities

Ta, Tb. This results in extra terms added to the Heisenberg equations of motion

for the two modes,

˙̂
b = −γεb b̂+

√
2γεbn̂b +

i

~
[Ĥtot, b̂], (C.13)

˙̂a = −γεaâ+
√

2γεan̂a +
i

~
[Ĥtot, â], (C.14)

where Htot is the total Hamiltonian derived in the main text. The noise cou-

pling constants for the â cavity and b̂ cavity respectively are given by:

γεa = εac/(4La) , γεb = εbc/(4Lb), (C.15)

where εa and εb are the optical losses described by cavity respectively. The

loss from the non-linear crystal couples identically to the mirror loss into both

cavities, and so can be included in εa, εb.

Solving the Heisenberg equations of motion in the frequency domain, we

found that the noise contribution from the auxiliary cavity loss n̂b is much

smaller than the contribution from the â cavity loss n̂a by a factor:

ω2γεb
γnegγγεa

� 1, (C.16)

assuming γεa ≈ γεb, and ω � γneg, ω � γ, a result also found in the optome-

chanical case explored in [5], in which the filter cavity takes the role of the

auxiliary cavity mode b̂ and the mechanical oscillator takes the role of the main

cavity mode â. However in our case the main cavity loss is due to vacuum and

is not thermally driven, and so is effectively at zero temperature. The phase

noise due to the thermal fluctuation of the non-linear crystal [120] is negligible

as there is almost no carrier power in either cavity.
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C.4 Alternative topology

Here we show an alternative topology for the realisation shown in Fig. 5.2.

The system consists of a linear coupled cavity. We call the cavity with the

nonlinear crystal in it the active cavity and the other the passive cavity. The

length of the passive cavity L1 differs from the length L2 of the active cavity

so that they have different mode spacings. The two modes â and b̂ in this

case belong to the same longitudinal modes of the active cavity but separated

by one free spectral range. The passive cavity acts as a compound mirror

with frequency-dependent effective phase φeff(ω) and transmissivity Teff(ω),

the former shifting the resonances of the active cavity by ωa and ωb for the

â and b̂, and the latter imparting different bandwidths for the two modes,

denoted γa = Teff(ωa)c/(4L2) and γb = Teff(ωb)c/(4L2) respectively. The non-

linear crystal pump frequency is set to ωp where ωp/2 is between the two modes

â and b̂. To make b̂ satisfy the adiabatic condition, we require γb � ω, while

to ensure good performance we require γa � γneg. Both bandwidths can be

independently controlled by changing the relative lengths of the two cavities.
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pump

OPO

Figure C.1 Optical diagram and relevant frequencies of the alterna-
tive topology, consisting of a non-linear crystal and two linear cavities
with the crystal in only one cavity.
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J − J unitary condition for

quadrature operators

In this section we will derive the equivalent to Eq. (5.13) for the quadrature

picture. The transformation for the transfer matrix is given by Eq. (A.6), so

that the sideband picture transfer matrix is G(s) = U†Gq(s)U where U =

diag(U1, . . . , U1) is a block-diagonal matrix with,

U1 =
1√
2

 1 1

−i i

 , (D.1)

and Gq(s) is the quadrature-picture transfer matrix.

The J − J unitary condition then becomes,

G†(s∗)JG(−s) = J = U†G†q(s
∗)UJU†Gq(−s)U, (D.2)

which we can write as,

G†q(s
∗)ΘGq(−s) = Θ, (D.3)

where Θ = UJU†.
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